Tag: obesity

Rates of Obesity Are Soaring Worldwide: Have We Been Misunderstanding the Problem?

Photo by Andres Ayrton on Pexels

By Jesse Copelyn

Authors of a recent Lancet report argue that obesity should not just be seen as a risk factor for other diseases – but in some cases, should be seen as a disease itself. The position could change how we treat obesity globally. In the first of this two-part Spotlight series, we break down the debate around the issue, and its implications for health policy.    

In 1990, just 2% of all young people around the world aged 5 to 24 were living with obesity. By 2021, this figure had more than tripled to over 6%. This is according to a recent study, which relied on Body Mass Index (BMI) data from 180 countries and territories around the world. It estimates that the rise in obesity among children and young people will only continue in the coming decades.

South Africa certainly isn’t immune to the crisis. A survey conducted in 2021/2022 found that 16% of all children aged 6 to 18 were “severely overweight”. Meanwhile, World Health Organization (WHO) data suggests that about 30% of all adults in South Africa are living with obesity, meaning a BMI of over 30, which is almost double the global level.

BMI, which simply looks at a person’s weight in relation to their height, is a crude measure of obesity. For instance, a person may have a high BMI simply because they have a lot of muscle rather than fat. But while it is agreed that BMI is a flawed indicator at the individual level, many experts recommend using it as a rough proxy for “health risk at a population level”.

For instance, a study which collected data on nearly three million people found that those who had very high BMI levels were, on average, more likely to die at an early age. The study also found that this was true of people with very low BMI levels (those who were underweight). In this context, the above figures paint a concerning picture.

Given the rising rates, experts argue that we need health systems to be able to track and respond to obesity urgently. But, according to a Lancet Commission published in January, health systems around the world may struggle to do this, because of a failure to accurately conceptualise and measure what obesity actually is.

The Lancet commission was developed by 58 experts from different medical specialties and though it has been the subject of debate, it has since been widely endorsed as a new way to understand obesity. Spotlight takes a look at what it concluded.

Delaying treatment for no reason

Obesity is often regarded as a risk factor for other diseases, for instance, type 2 diabetes. But according to the commission, there are certain cases in which obesity is not just a risk factor, but a disease itself – one that should be immediately treated.

One of the reasons for this is that obesity not only contributes to the emergence of other conditions but sometimes leads to clinical symptoms directly. For example, the cartilage that protects the joints in a person’s knees can sometimes become eroded when adults carry too much weight. In this case, a person could suffer from joint pain, stiffness and reduced mobility where obesity is clearly the cause.

Take another example. If fat deposits build up in the abdomen, this may limit how much the lungs can expand, causing breathlessness. Similarly, a build-up of fat around the neck can narrow a person’s upper airways, which can cause sleep apnoea.

Thus, obesity is not simply something which increases the risk of developing a separate disease in the future – but something which can directly (and presently) affect the functioning of organs.

More broadly, the commission argues that by hindering a person’s “mobility, balance and range of motion” obesity can in certain cases “restrict routine activities of daily living”. In these instances, obesity is a disease by definition, according to the commission. This is given that it defines disease as a “harmful deviation from the normal structural or functional state of an organism, associated with specific signs and symptoms and limitations of daily activities”.

But why does this conceptual debate matter?

Because at present, people often have to wait for other diseases to crop up before insurers or public health systems cover them for weight loss drugs or bariatric surgery – a procedure to help with weight loss and improve obesity-related health conditions. And when they do cover these services, it is often only after severe delay. Because obesity is only considered to be a risk factor, it isn’t typically treated with the same urgency as life-threatening diseases, according to the authors of the commission.

Professor Frances Rubino, the lead author of the commission, details how this problem manifests in the healthcare system.

“I’ve been doing bariatric surgery for 25 years in four different countries; in America, Italy, France and the UK,” he tells Spotlight, “In all of those countries, to meet the criteria for surgery people very often have to undergo six to 12 months of weight monitoring before their surgery is covered. So systematically you delay treatment”.

He continues: “Someone who has clinical obesity and has heart failure as a result of it is waiting for a year for what reason? That condition will only worsen and if the patient is still alive, the treatment [is] going to cost the same amount to the payer but it’s going to be less effective.”

Can’t people just diet?

One of the reasons that some academics have historically been reluctant to classify obesity as a disease is because of a fear that this may reduce people’s agency – instead of taking proactive steps to diet and exercise, people with obesity may simply view themselves as afflicted by a disease.

The belief that people with obesity can simply diet their way out of their situation is in fact partially why Rubino’s patients were forced to wait long periods of time before receiving bariatric surgery.

Rubino explains: “In America, many private payers [i.e. medical insurance schemes] have required weight monitoring programmes, where patients do nothing else other than see a dietician for 12 months, and if they skip one appointment, they have to start all over again. I think that in some cases, this has been misguided by the idea that you want to see if obesity can be reversed by somebody going on a diet.”

This, according to him, is a “misconception”, arguing that if someone faces such severe levels of obesity that they require surgery, diet is unlikely to offer a solution.

Indeed, research has shown that it’s very rare for people with obesity to lose large amounts of weight quickly without surgery or medication. For instance, a study on over 176 000 patients in the UK found that among men with “simply obesity” or a BMI of 30-34.9, only 1 in 210 were able to achieve a “normal” weight level within a year. Among men with morbid obesity or BMI of 35 or more, the chance was less than 1 than in 1000. Chances for women were roughly twice as good as men’s – so still exceedingly small.

Thus, if someone is severely obese and their excess weight is causing life-threatening symptoms, putting them on a diet for a year is unlikely to result in the urgent changes that may be required for them to get better. In fact, Rubino argues that they may simply die of their condition in the interim.

Taking a medical approach more quickly is easier now than ever before due to the regulatory approval of GLP-1 agonists like semaglutide and tirzepatide – Spotlight previously reported on the availability of these new diabetes and weight loss medicines in South Africa. An article by WHO officials from December states that because of the approval of these medicines “[h]ealth systems across the globe now may be able to offer a treatment response integrated with lifestyle changes that opens the possibility of an end to the obesity pandemic”.

Not all people with obesity are ill

There is a more scientific argument against categorising obesity as a disease. This is that while obesity can sometimes result in the negative health symptoms discussed above (like respiratory issues or reduced mobility) it doesn’t always do this.

In fact, the commission acknowledges that some people with obesity “appear to be able to live a relatively healthy life for many years, or even a lifetime”. One of the reasons for this is that excess fat may be stored in areas that don’t surround vital organs. For instance, if fat is stored in the limbs, hips, or buttocks, then this may cause less harm than if it is stored in the stomach.

Since obesity doesn’t always cause health problems, it isn’t always a disease. In order to deal with this conceptual hurdle, the commission classifies obesity into two categories – clinical and preclinical obesity.

If a person has pre-clinical obesity, this means they have a lot of excess fat, but no obvious health problems that have emerged as a result. In this case, obesity is not classified as a disease, though it may still increase the chance of future health problems (depending on a range of factors, like family history).

For a person to have clinical obesity, they must have a lot of excess fat as well as health problems that have already been directly caused by this. It is this that the commission defines as a disease.

This classification system, according to Rubino, ensures not only that we urgently treat people living with clinical obesity, but also that we don’t overtreat people – since if a person falls into the pre-clinically obese group, then they may not need treatment.

But if we’re going to treat clinical obesity as a disease, we’ll need clear methods of diagnosing people. Since BMI is deeply flawed and provides little information about whether a person is ill at the individual level, health systems will need something else. In part 2 of this Spotlight special series, we’ll discuss the options offered by the commission, and how this all relates to the situation in South Africa.

Republished from Spotlight under a Creative Commons licence.

Read the original article.

Obesity Found to be a Leading Cause of Knee Osteoarthritis

Photo by Towfiqu barbhuiya

New research from the University of Sydney reveals that obesity, having a knee injury and occupational risks such as shift work and lifting heavy loads are primary causes of knee osteoarthritis.

The study also found that following a mediterranean diet, drinking green tea and eating dark bread could reduce the risk of developing knee osteoarthritis.

Published in Osteoarthritis and Cartilage, the study was led by Associate Professor Christina Abdel Shaheed and Dr Vicky Duong.

Using data from 131 studies conducted between 1988 to 2024, the researchers examined over 150 risk factors in participants ranging from 20 to 80 years old to determine which were associated with an increased risk of developing knee osteoarthritis. 

“Our research found that while factors such as eating ultra-processed foods and being overweight increase the risk, addressing lifestyle factors – such as losing weight or adopting a better diet – could significantly improve people’s health,” Associate Professor Abdel Shaheed said.

Co-author Professor David Hunter, a researcher at the Kolling Institute and Professor of Medicine at the University of Sydney, said: “Women were twice as likely to develop the condition than men, and older age was only mildly associated with increased risk.”

Reducing the risk of knee osteoarthritis

Dr Duong, lead author and post-doctoral researcher at the Kolling Institute, said: “Eliminating obesity and knee injuries combined could potentially reduce the risk of developing knee osteoarthritis by 14 percent across the population.

“We urge governments and the healthcare sector to take this seriously and to implement policy reforms that address occupational risks, subsidise knee injury prevention programs, and promote healthy eating and physical activity to reduce obesity.”

Source: University of Sydney

Do Lifetime Body Weight Patterns Affect the Risk of Kidney Cancer?

Study links higher body mass index at various ages across adulthood with greater risks of developing different types of kidney cancer.

Photo by I Yunmai on Unsplash

Excess weight in mid-life is a known risk factor for kidney cancer, but new research indicates that weight patterns throughout life may also affect an individual’s likelihood of developing this malignancy. The findings are published by Wiley online in CANCER, a peer-reviewed journal of the American Cancer Society.

To assess weight patterns and their associations with kidney cancer and its different subtypes, investigators analysed data from 204 364 individuals from the NIH-AARP Diet and Health Study, including body mass index (BMI) data when participants entered the study (an average age of 61.6 years), and prior BMI recordings at 18, 35, and 50 years of age. The team noted that there were 1,425 cases of kidney cancer, or renal cell carcinoma (RCC), among the study’s participants, with 583 having aggressive RCC and 339 having fatal RCC. The researchers also recorded the different subtypes of RCC, including clear cell RCC (541 patients), papillary RCC (146 patients), and chromophobe RCC (64 patients).

Higher BMI at any of the ages assessed was linked with higher risks of overall RCC and all subtypes (except chromophobe RCC), with a 10-40% higher risk for each 5-unit increase in BMI. Similar increased risks were linked to weight gain during adulthood that resulted in overweight or obesity, compared with maintaining normal BMI.

Also, long-term excess weight was associated with higher risks of overall RCC, aggressive RCC, fatal RCC, and clear cell RCC, but not papillary RCC and chromophobe RCC. Weight loss in which BMI was reduced by at least 10%, particularly later in life, was associated with a lower risk of RCC. Specifically, weight loss from age 18–35 years and after age 50 years was associated with 21% and 28% reductions in RCC incidence, respectively.

“These findings emphasise that maintaining a healthy weight across one’s lifetime is important for reducing RCC risk. More importantly, weight loss, even later in life, may offer protective benefits,” said lead author Zhengyi Deng, PhD, of Stanford University School of Medicine. “We should support initiatives that promote healthy weight maintenance and weight loss strategies. Some of these include lifestyle interventions, weight-loss programs, and emerging medical treatments for obesity; however, individuals should consult with their healthcare providers prior to initiation of any plan.” 

Source: Wiley

Why do Some People with Obesity Remain Healthy?

Source: Pixabay CC0

Although obese individuals are at greater risk of diabetes, high blood pressure or high cholesterol, not all obese people develop metabolic diseases of this kind. With around a quarter of all obese individuals are healthy, scientists are trying to work out why some obese people become unhealthy while others do not.

Now, a comprehensive study by researchers from Zurich and Leipzig has provided a vital basis for this work. Specifically, the researchers have produced a detailed atlas with data from healthy and unhealthy overweight people, on their fat (adipose) tissue, and on the gene activity in this tissue’s cells. “Our results can be used to look for cellular markers that provide information on the risk of developing metabolic diseases,” explains Adhideb Ghosh, a researcher in ETH Professor Christian Wolfrum’s group and one of the two lead authors of the study. “The data is also of great interest for basic research. It could help us develop new therapies for metabolic diseases.”

The study appears in Cell Metabolism.

Investigating a large biobank

For this study, Ghosh and his colleagues used the Leipzig Obesity Biobank, an extensive collection of biopsies taken from obese individuals. Compiled by scientists from the University of Leipzig, these samples originate from obese patients who underwent elective surgery and consented to the collection of adipose tissue samples for research purposes. The collection also includes extensive medical information on the patients’ health.

Since the tissue samples were all taken from obese individuals with or without metabolic diseases, they allow comparison between individuals with healthy and unhealthy obesity. In samples from 70 volunteers, the researchers at ETH Zurich examined which genes were active, and to what extent, on a cell-by-cell basis for two types of adipose tissue: subcutaneous and visceral.

Scientists and medical experts assume that visceral fat, which lies deep in the abdominal cavity and surrounds the internal organs, is primarily responsible for metabolic diseases. By contrast, experts generally believe that fat located directly beneath the skin is less problematic.

For the study, it was vital that the adipose tissue cells were not all simply lumped together, as this tissue comprises not only fat cells (adipocytes) but also cells of other types. “In fact, the adipocytes are in the minority,” explains lead author Isabel Reinisch, a postdoc in Wolfrum’s group. A large part of adipose tissue is made up of immune cells, cells that form blood vessels, and immature precursor cells of adipocytes. Another cell type, known as mesothelial cells, are found only in visceral adipose tissue and mark its outer boundary.

Abdominal fat remodelled – and gender differences

As the researchers were able to show, there are significant functional changes in cells in the visceral adipose tissue of people with metabolic diseases. This remodelling affects almost every cell type in this form of tissue. For example, the genetic analyses showed that the adipocytes of unhealthy individuals could no longer burn fats as effectively and instead produced greater quantities of immunologic messenger molecules. “These substances trigger an immune response in the visceral fat of obese people,” explains Reinisch. “It’s conceivable that this response promotes the development of metabolic diseases.”

The researchers also found very clear differences in the number and function of mesothelial cells: in healthy obese individuals, there is a far greater proportion of mesothelial cells in the visceral fat and these cells exhibit greater functional flexibility. Specifically, the cells can switch into a sort of stem cell mode and therefore convert into different cell types, such as adipocytes, in healthy individuals. “The ability of fully differentiated cells to convert into stem cells is otherwise primarily associated with cancer,” says Reinisch. She was surprised, therefore, to find this ability in adipose tissue as well. “We suspect that the flexible cells at the edge of the adipose tissue in healthy obese individuals facilitate smooth tissue expansion.”

Finally, the researchers also found differences between men and women: a certain type of progenitor cell is present only in the visceral fat of women. “This could explain differences in the development of metabolic diseases between men and women,” says Reinisch.

Finding new biomarkers

The new atlas of gene activity in overweight people describes the composition of cell types in adipose tissue and their function. “However, we cannot say whether the differences are the reason why someone is metabolically healthy or whether, conversely, metabolic diseases cause these differences,” says Ghosh. Instead, the scientists view their work as providing the basis for further research. They have published all the data in a publicly accessible web app so that it is available for other researchers to work with.

In particular, this atlas now makes it possible to find new markers that provide information on the risk of developing a metabolic disease. At present, the ETH researchers are also looking for these kinds of markers, which could help to improve the treatment of such diseases. For example, there is a new class of drugs that suppress the appetite and promote insulin release in the pancreas – but these medications are in short supply. “Biomarkers that can be derived from our data could help to identify those patients who are most in need of this treatment,” says Reinisch.

Source: ETH Zurich

In Obesity or Not, Individuals Prefer High-calorie Food

Calorie content drives food preference despite similar taste in individuals with and without obesity

Source: Pixabay CC0

Higher calorie foods were preferred among individuals with and without obesity despite similar taste and texture, according to a study published December 17th in the open-access journal PLOS Biology by Albino Oliveira-Maia from the Champalimaud Foundation, Portugal, and colleagues.

Eating sends signals to the brain with information about a food’s energy content, which can influence food preferences irrespective of flavor. People with obesity often have impairments in areas of the brain where dopamine is released, which may drive reward-related eating and a preference for energy-dense foods rich in fat and sugars. Weight loss due to bariatric surgery has been associated to a normalization of reward-related eating with a shift of preferences toward healthier options, but the underlying mechanisms are not well understood.

In this study, after examining a large group of healthy volunteers, researchers compared food preferences in three groups: 11 individuals with obesity, 23 post-bariatric surgery patients, and 27 non-obese control subjects. They gave participants sweetened low-fat yogurt with and without maltodextrin (a carbohydrate that adds calories to the yogurt with no impact on taste or texture). Participants ate the yogurt at home, alternating between the maltodextrin-containing and -free yogurt. All three groups ate more of the maltodextrin-containing yogurt, despite rating both as equally pleasant. Somewhat unexpectedly, the effects of maltodextrin on yogurt consumption were similar in individuals with obesity relative to their non-obese counterparts.

The study also used radioactive iodine labelling and single photon emission computed tomography to visualise dopamine receptors in the brain. Consistent with previous studies, individuals with obesity had lower dopamine receptor availability than non-obese controls. Dopamine receptor availability was similar in the surgical and non-obese groups and was associated with more restrained eating. These results suggest that obesity-related brain changes can be reversed after bariatric surgery, potentially impacting the amount of food consumed but not necessarily the types of food preferred.

The authors add, “We were very intrigued that, while behaviour was guided towards eating yoghurts with higher energy-content, this did not seem to be a result of explicit choices, since consistent changes in pleasantness of flavours enriched with carbohydrates were not found. Importantly, this behaviour was maintained in patients with obesity and after weight-loss surgery, even though there were important differences in their brain dopaminergic system.”

Provided by PLOS

Healthcare Trends to Watch in 2025

AI image made with Gencraft using Quicknews’ prompts.

Quicknews takes a look at some of the big events and concerns that defined healthcare 2024, and looks into its crystal ball identify to new trends and emerging opportunities from various news and opinion pieces. There’s a lot going on right now: the battle to make universal healthcare a reality for South Africans, growing noncommunicable diseases and new technologies and treatments – plus some hope in the fight against HIV and certain other diseases.

1. The uncertainty over NHI will continue

For South Africa, the biggest event in healthcare was the signing into law of the National Health Insurance (NHI) by President Ramaphosa in May 2024, right before the elections. This occurred in the face of stiff opposition from many healthcare associations. It has since been bogged down in legal battles, with a section governing the Certificate of Need to practice recently struck down by the High Court as it infringed on at least six constitutional rights.

Much uncertainty around the NHI has been expressed by various organisation such as the Health Funders Association (HFA). Potential pitfalls and also benefits and opportunities have been highlighted. But the biggest obstacle of all is the sheer cost of the project, estimated at some R1.3 trillion. This would need massive tax increases to fund it – an unworkable solution which would see an extra R37 000 in payroll tax. Modest economic growth of around 1.5% is expected for South Africa in 2025, but is nowhere near creating enough surplus wealth to match the national healthcare of a country like Japan. And yet, amidst all the uncertainty, the healthcare sector is expected to do well in 2025.

Whether the Government of National Unity (GNU) will be able to hammer out a workable path forward for NHI remains an open question, with various parties at loggerheads over its implementation. Public–private partnerships are preferred by the DA and groups such as Solidarity, but whether the fragile GNU will last long enough for a compromise remains anybody’s guess.

It is reported that latest NHI proposal from the ANC includes forcing medical aid schemes to lower their prices by competing with government – although Health Minister Aaron Motsoaledi has dismissed these reports. In any case, medical aid schemes are already increasing their rates as healthcare costs continue to rise in what is an inexorable global trend – fuelled in large part by ageing populations and increases in noncommunicable diseases.

2. New obesity treatments will be developed

Non-communicable diseases account for 56% of deaths in South Africa, and obesity is a major risk factor, along with hypertension and hyperglycaemia, which are often comorbid. GLP-1 agonists were all over the news in 2023 and 2024 as they became approved in certain countries for the treatment of obesity. But in South Africa, they are only approved for use in obesity with a diabetes diagnosis, after diet and exercise have failed to make a difference, with one exception. Doctors also caution against using them as a ‘silver bullet’. Some are calling for cost reductions as they can be quite expensive; a generic for liraglutide in SA is expected in the next few years.

Further on the horizon, there are a host of experimental drugs undergoing testing for obesity treatment, according to a review published in Nature. While GLP-1 remains a target for many new drugs, others focus on gut hormones involved in appetite: GIP-1, glucagon, PYY and amylin. There are 5 new drugs in Phase 3 trials, expected variously to finish between 2025 and 2027, 10 drugs in Phase 2 clinical trials and 18 in Phase 1. Some are also finding applications beside obesity. The GLP-1 agonist survodutide, for example have received FDA approval not for obesity but for liver fibrosis.

With steadily increasing rates of overweight/obesity and disorders associated with them, this will continue to be a prominent research area. In the US, where the health costs of poor diet match what consumers spend on groceries, ‘food as medicine’ has become a major buzzword as companies strive to deliver healthy nutritional solutions. Retailers are providing much of the push, and South Africa is no exception. Medical aid scheme benefits are giving way to initiatives such as Pick n Pay’s Live Well Club, which simply offers triple Smart Shopper points to members who sign up.

Another promising approach to the obesity fight is precision medicine, which factors in many data about the patient to identify the best interventions. This could include detailed study of energy balance regulation, helping to select the right antiobesity medication based on actionable behavioural and phsyiologic traits. Genotyping, multi-omics, and big data analysis are growing fields that might also uncover additional signatures or phenotypes better responsive to certain interventions.

3. AI tools become the norm

Wearable health monitoring technology has gone from the lab to commonly available consumer products. Continued innovation in this field will lead to cheaper, more accurate devices with greater functionality. Smart rings, microneedle patches and even health monitoring using Bluetooth earphones such as Apple’s Airpods show how these devices are becoming smaller and more discrete. But health insurance schemes remain unconvinced as to their benefits.

After making a huge splash in 2024 as it rapidly evolved, AI technology is now maturing and entering a consolidation phase. Already, its use has become commonplace in many areas: the image at the top of the article is AI-generated, although it took a few attempts with the doctors exhibiting polydactyly and AI choosing to write “20215” instead of “2025”. An emerging area is to use AI in patient phenotyping (classifying patients based on biological, behavioural, or genetic attributes) and digital twins (virtual simulations of individual patients), enabling precision medicine. Digital twins for example, can serve as a “placebo” in a trial of a new treatment, as is being investigated in ALS research.

Rather than replacing human doctors, it is likely that AI’s key application is reducing lowering workforce costs, a major component of healthcare costs. Chatbots, for example, could engage with patients and help them navigate the healthcare system. Other AI application include tools to speed up and improve diagnosis, eg in radiology, and aiding communication within the healthcare system by helping come up with and structure notes.

4. Emerging solutions to labour shortages

Given the long lead times to recruit and train healthcare workers, 2025 will not likely see any change to the massive shortages of all positions from nurses to specialists.

At the same time, public healthcare has seen freezes on hiring resulting in the paradoxical situation of unemployed junior doctors in a country desperately in need of more doctors – 800 at the start of 2024 were without posts. The DA has tabled a Bill to amend the Health Professions Act at would allow private healthcare to recruit interns and those doing community service. Critics have pointed out that it would exacerbate the existing public–private healthcare gap.

But there are some welcome developments: thanks to a five-year plan from the Department of Health, family physicians in SA are finally going to get their chance to shine and address many problems in healthcare delivery. These ‘super generalists’ are equipped with a four-year specialisation and are set to take up roles as clinical managers, leading multi-disciplinary district hospital teams.

Less obvious is where the country will be able to secure enough nurses to meet its needs. The main challenge is that nurses, especially specialist nurses, are ageing – and it’s not clear where their replacements are coming from. In the next 15 years, some 48% of the country’s nurses are set to retire. Coupled with that is the general consensus that the new nursing training curriculum is a flop: the old one, from 1987 to 2020, produced nurses with well-rounded skills, says Simon Hlungwani, president of the Democratic Nursing Organisation of South Africa (Denosa). There’s also a skills bottleneck: institutions like Baragwanath used to cater for 300 students at a time, now they are only approved to handle 80. The drive for recruitment will also have to be accompanied by some serious educational reform to get back on track.

5. Progress against many diseases

Sub-Saharan Africa continues to drive declines in new HIV infections.  Lifetime odds of getting HIV have fallen by 60% since the 1995 peak. It also saw the largest decrease in population without a suppressed level of HIV (PUV), from 19.7 million people in 2003 to 11.3 million people in 2021. While there is a slowing in the increase of population living with HIV, it is predicted to peak by 2039 at 44.4 million people globally. But the UNAIDS HIV targets for 2030 are unlikely to be met.

As human papillomavirus (HPV) vaccination programmes continue, cervical cancer deaths in young women are plummeting, a trend which is certain to continue.

A ‘new’ respiratory virus currently circulating in China will fortunately not be the next COVID. Unlike SARS-CoV-2, human metapneumovirus (HMPV) has been around for decades, and only causes a few days of mild illness, with bed rest and fluids as the primary treatment. The virus has limited pandemic potential, according to experts.

Does Obesity Affect Children’s Chances of Survival after Cancer Diagnosis?

Photo by Patrick Fore on Unsplash

A recent population-based study indicates that among children with cancer, those with obesity at the time of diagnosis may face an elevated risk of dying. The findings are published by Wiley online in CANCER, a peer-reviewed journal of the American Cancer Society.

The retrospective study was based on information from the Cancer in Young People in Canada (CYP-C) database, including all children with newly diagnosed cancer aged 2 to 18 years across Canada from 2001 to 2020. Obesity was defined as age and sex-adjusted body mass index at or above the 95th percentile.

Among 11 291 children with cancer, 10.5% were obese at the time of diagnosis. Investigators assessed 5-year event-free survival (survival free of cancer relapse), as well as overall survival.

Compared with patients without obesity at the time of initial cancer diagnosis, those with obesity had lower rates of 5-year event-free survival (77.5% versus 79.6%) and overall survival (83.0% versus 85.9%).

After adjusting for factors including age, sex, ethnicity, neighbourhood income quintile, treatment era, and cancer categories, obesity at diagnosis was linked with a 16% increase in the risk of relapse and a 29% increase in the risk of death. The negative impact of obesity on prognosis was especially pronounced in patients with acute lymphoblastic leukaemia and brain tumours.

“Our study highlights the negative impact of obesity among all types of childhood cancers. It provides the rationale to evaluate different strategies to mitigate the adverse risk of obesity on cancer outcomes in future trials,” said co–senior author Thai Hoa Tran, MD, of the Centre Hospitalier Universitaire Sainte-Justine, in Montreal. “It also reinforces the urgent need to reduce the epidemic of childhood obesity as it can result in significant health consequences.”

Source: Wiley

Can Metabolic-bariatric Surgery help Prevent Pancreatic Cancer in Obesity?

Sleeve gastrectomy. Credit: Scientific Animations CC4.0

Obesity and type 2 diabetes are risk factors for various malignancies, including pancreatic cancer, which has a high death rate. A new analysis in Diabetes/Metabolism Research and Reviews suggests that metabolic-bariatric surgery may lower the risk of developing pancreatic cancer in people with obesity, especially in those who also have type 2 diabetes.

In the systematic review and meta-analysis, investigators identified 12 relevant studies that explored the effects of metabolic-bariatric surgery on pancreatic cancer incidence, with a total of 3 711 243 adults with obesity. Surgery was associated with a 44% reduction in pancreatic cancer risk among individuals with obesity but without type 2 diabetes and a 79% risk reduction in those with both obesity and type 2 diabetes.

“Metabolic-bariatric surgery not only has beneficial effects on obesity and type 2 diabetes but also may play a crucial role in reducing the risk of pancreatic cancer in these individuals,” said corresponding author Angeliki M. Angelidi, PhD, of the Broad Institute of MIT and Harvard. “These findings underscore the need for further research to elucidate the underlying mechanisms and understand the full spectrum of health benefits of metabolic-bariatric surgery beyond weight loss.”

Source: Wiley

The Outcomes of Cancer Therapies and BMI Have a Complex Relationship

Risk of mortality during cancer treatment in relation to BMI. For non-small cell lung cancer treatment, immunotherapy seems to pose less risk for persons under a certain BMI, while conventional chemotherapy appears optimal for persons who might be overweight or obese. Credit: Osaka Metropolitan University

While being overweight increases the risk of developing lifestyle-related diseases, there is a phenomenon known as the obesity paradox where a decreased risk of death has been seen during cancer therapy. However, that paradox might not hold true for all cancer therapies, an Osaka Metropolitan University team reports in JAMA Network Open, a publication of the American Medical Association.

Led by graduate student Mr Yasutaka Ihara and Professor Ayumi Shintani of the Graduate School of Medicine’s Department of Medical Statistics, the team used a Japanese administrative claims database of more than 500 000 lung cancer patients and examined the relation between body mass index (BMI) and the risk of mortality during immunotherapy and conventional chemotherapy.

Focusing only on patients with advanced non-small cell lung cancer, the team found that the higher the BMI, the lower the risk of mortality when undergoing both immunotherapy and chemotherapy, though it does a U-turn around a BMI of 24. Patients with a BMI under 28 showed lower risk of mortality when undergoing immunotherapy compared to conventional chemotherapy, but for those at or over that figure, the risk increases with immunotherapy while it continues to get lower with chemotherapy.

“Immunotherapy might not always be the optimal treatment method for obese patients with advanced non-small cell lung cancer, so the use of conventional chemotherapy should also be considered,” Mr. Ihara stated. “In addition to BMI, age, hormones, and gut microbiota have been reported as factors that influence the effectiveness of immunotherapy. Evaluation of whether immunotherapy or conventional chemotherapy improves survival in the presence of these factors is expected to contribute to the development of precision medicine.”

Source: Osaka Metropolitan University

Study Reveals Association Between Semaglutide Use and Optic Neuropathy

Photoreceptor cells in the retina. Credit: Scientific Animations

Researchers from Mass Eye and Ear have discovered an association between semaglutide use and an increased risk of nonarteritic anterior ischaemic optic neuropathy (NAION) in patients with type 2 diabetes, overweight or obesity. The findings, which appear in JAMA Ophthalmology, only show an association and cannot establish causation.

Though NAION is relatively rare, occurring in in about 10 in 100 000, it is the second most common cause of optic nerve blindness, behind glaucoma, and it is the most common cause of sudden optic nerve blindness. Caused by decreased blood flow to the optic disc, it usually affects only one eye but in 15% of cases both eyes are involved. There are no treatments for this disease and little prospect for improvement, although it is painless.

The study was led by Joseph Rizzo, MD, director of the Neuro-Ophthalmology Service at Mass Eye and Ear and the Simmons Lessell Professor of Ophthalmology at Harvard Medical School.

In mid-2023 Rizzo, a resident (study co-author Seyedeh Maryam Zekavat, MD, PhD) and other Mass Eye and Ear neuro-ophthalmologists noticed a disturbing trend – three patients in their practice had been diagnosed with vision loss from this relatively uncommon optic nerve disease in just one week. They did notice however that all three were taking semaglutide.

“The use of these drugs has exploded throughout industrialised countries and they have provided very significant benefits in many ways, but future discussions between a patient and their physician should include NAION as a potential risk,” said Rizzo, corresponding author of the study. “It is important to appreciate, however, that the increased risk relates to a disorder that is relatively uncommon.” 

This prompted the Mass Eye and Ear research team to run a retrospective analysis of their patient population to see if they could identify a link between this disease and these drugs.

They performed matched cohort study of 16 827 patients revealed higher risk of NAION in patients prescribed semaglutide compared with patients prescribed non–GLP-1 receptor agonist medications for diabetes or obesity.

The researchers found that patients with diabetes who were prescribed and took semaglutide were four times (hazard ratio [HR], 4.28) more likely to be receive a NAION diagnosis. The odds increased to more than seven times (HR, 7.64) when the prescription was for weight control in obesity.

The researchers analysed the records of more than 17 000 Mass Eye and Ear patients treated over the six years since Ozempic was released and divided the patients in those who were diagnosed with either diabetes or overweight/ obesity. The researchers compared patients who had received prescriptions for semaglutide compared to those taking other diabetes or weight loss drugs. Then, they analysed the rate of NAION diagnoses in the groups, which revealed the significant risk increases.

Study limitations include the fact that Mass Eye and Ear sees an unusually high number of people with rare eye diseases, and the number of NAION cases seen over the six-year study period is relatively small. With small case numbers, statistics can change quickly, Rizzo noted. Medication adherence could also not be assessed.

Only correlation can be shown by the study, not causality. How or why this association exists remains unknown. Likewise, the reason for the reported difference between diabetic and overweight groups – but this does not appear to result from a difference in baseline characteristics. The optic nerve is known to host GLP-1 receptors, but the study did not adequately address all the confounding factors. They also caution against generalising the results (from a majority white population) since Black individuals have a lower risk of NAION.

“Our findings should be viewed as being significant but tentative, as future studies are needed to examine these questions in a much larger and more diverse population,” Rizzo said. “This is information we did not have before and it should be included in discussions between patients and their doctors, especially if patients have other known optic nerve problems like glaucoma or if there is pre-existing significant visual loss from other causes.”