Category: Immune System

Liver Immune System Quickly ‘Eats up’ LDL Cholesterol

Colourised electron micrograph image of a macrophage. Credit: NIH

A new study reveals that immune cells in the liver react to high cholesterol levels and eat up excess cholesterol that can otherwise cause damage to arteries. The findings, published in Nature Cardiovascular Research, suggest that the response to the onset of atherosclerosis begins in the liver.

Immediate response from the liver

In the current study, researchers from Karolinska Institutet wanted to understand how different tissues in the body react to high levels of LDL, commonly called ‘bad cholesterol’, in the blood.

To test this, they created a system where they could quickly increase the cholesterol in the blood of mice.

“Essentially, we wanted to detonate a cholesterol bomb and see what happened next,” says Stephen Malin, lead author of the study and principal researcher at the Department of Medicine, Solna, Karolinska Institutet.

“We found that the liver responded almost immediately and removed some of the excess cholesterol.”

However, it wasn’t the typical liver cells that responded, but a type of immune cell called Kupffer cells that are known for recognising foreign or harmful substances and eating them up. The discovery made in mice was also validated in human tissue samples.

“We were surprised to see that the liver seems to be the first line of defence against excess cholesterol and that the Kupffer cells were the ones doing the job,” says Stephen Malin.

“This shows that the liver immune system is an active player in regulating cholesterol levels, and suggests that atherosclerosis is a systemic disease that affects multiple organs and not just the arteries.”

Several organs could be involved

The researchers hope that by understanding how the liver and other tissues communicate with each other after being exposed to high cholesterol, they can find new ways to prevent or treat cardiovascular and liver diseases.

“Our next step is to look at how other organs respond to excess cholesterol, and how they interact with the liver and the blood vessels in atherosclerosis,” says Stephen Malin. “This could help us develop more holistic and effective strategies to combat this common and deadly disease.”

Source: Karolinska Institutet

Scientists Peer into a Transporter Protein for Inflammatory Signals

In the human body, a protein carrier called SPNS2 transports S1P molecules from endothelial cells to rally immune cell response in infected organs and tissues, resulting in inflammation. By enlarging the entire SPNS2 structure using nanoparticles, the S1P molecules contained within can be viewed via cryogenic electron microscopy. Using this information, small molecules can be developed to inhibit this signalling pathway and treat inflammatory diseases.

Scientists at the National University of Singapore and colleagues in China have analysed the structure of the SPNS2 protein at an atomic level that could provide greater insights into how S1P signalling molecules are released to communicate with the immune cells to regulate inflammatory responses. Their findings are published in Cell Research.

“Seeing is believing. This work shows that SPNS2 is directly exporting S1P for signalling and it is possible to inhibit its transport function with small molecules. This work provides the foundation for understanding of how S1P is released by SPNS2 and how this protein function is inhibited by small molecules for treatment of inflammatory diseases,” said team leader Dr Nguyen Nam Long.

The SPNS2 protein allows the binding of the S1P signalling molecules to trigger the immune cells to leave the lymph nodes and induce inflammation in different parts of the body when needed.

Made up of amino acids, the SPNS2 protein is malleable enough to change its shape and structure to release the S1P signalling molecules through small cavities found within the protein.

Through the discovery of how the SPNS2 protein releases S1P molecules, the SPNS2 structure can be exploited for future drug development.

Similar to discovering how the shape of the lock looks like before the key can be designed, this finding sheds more light into how future drugs can be designed to better target the protein to increase drug efficacy.

This finding builds on previous research which found that deleting SPNS2 protein from a pre-clinical model effectively blocks the S1P signalling pathway so that the S1P signalling molecules are unable to be transported to prompt immune cells to leave the lymph node to induce inflammation.

Both SPNS2 protein and S1P signalling molecule are required for immune cell recruitment to inflammatory organs, which goes towards treating various inflammatory diseases.

“Using pre-clinical models, we have shown that targeting SPNS2 proteins in the body blocks inflammatory responses in disease conditions, such as multiple sclerosis. This work has provided us a possibility to inhibit its transport function with small molecules that will go a long way to treating inflammatory diseases more efficiently and effectively,” said Dr Nguyen.

Source: National University of Singapore, Yong Loo Lin School of Medicine

Smoking Affects the Immune System Many Years after Quitting

Photo by Sara Kurfess on Unsplash

Researchers from Institut Pasteur have discovered that the immune impacts of smoking can last for many years, leaving smokers with effects on some of their bodies’ defence mechanisms acquired while smoking. These findings, which for the first time reveal a long-term memory of the effects of smoking on immunity, are published in the journal Nature.

Individuals’ immune systems vary significantly in terms of how effectively they respond to microbial attacks. But how can this variability be explained? What factors cause these differences? “To answer this key question, we set up the Milieu Intérieur cohort comprising 1000 healthy individuals aged 20 to 70 in 2011,” explains Darragh Duffy, Head of the Translational Immunology Unit at the Institut Pasteur and last author of the study. While certain factors such as age, sex and genetics are known to have a significant impact on the immune system, the aim of this new study was to identify which other factors had the most influence.”

The scientists exposed blood samples taken from individuals in the Milieu Intérieur cohort to a wide variety of microbes and observed their immune response by measuring levels of secreted cytokines(1). Using the large quantities of data gathered for individuals in the cohort, the team then determined which of the 136 investigated variables (body mass index, smoking, number of hours’ sleep, exercise, childhood illnesses, vaccinations, living environment, etc) had the most influence on the immune responses studied. Three variables stood out: smoking, latent cytomegalovirus infection(2) and body mass index. “The influence of these three factors on certain immune responses could be equal to that of age, sex or genetics,” points out Darragh Duffy.

As regards smoking, an analysis of the data showed that the inflammatory response, which is immediately triggered by infection with a pathogen, was heightened in smokers, and moreover, the activity of certain cells involved in immune memory was impaired. In other words, this study shows that smoking disrupts not only innate immune mechanisms, but also some adaptive immune mechanisms. “A comparison of immune responses in smokers and ex-smokers revealed that the inflammatory response returned to normal levels quickly after smoking cessation, while the impact on adaptive immunity persisted for 10 to 15 years,” observes Darragh Duffy. “This is the first time it has been possible to demonstrate the long-term influence of smoking on immune responses.”

Basically, the immune system appears to have something resembling a long-term memory of the effects of smoking. But how? “When we realised that the profiles of smokers and ex-smokers were similar, we immediately suspected that epigenetic processes were at play(3),” says Violaine Saint-André, a bioinformatician in the Institut Pasteur’s Translational Immunology Unit and first author of the study. “We demonstrated that the long-term effects of smoking on immune responses were linked to differences in DNA methylation(4) – with the potential to modify the expression of genes involved in immune cell metabolism – between smokers, ex-smokers and non-smokers.” It therefore appears that smoking can induce persistent changes to the immune system through epigenetic mechanisms.

“This is a major discovery elucidating the impact of smoking on healthy individuals’ immunity and also, by comparison, on the immunity of individuals suffering from various diseases,” concludes Violaine Saint-André.


(1) proteins secreted by a large number of immune cells to communicate among themselves and participate in immune defense.

(2) a virus in the herpes family that is often asymptomatic though dangerous to foetuses.

(3) changes in DNA that affect how genes are expressed, i.e. how they are used by cells.

(4) methylation is a type of chemical modification. Methyl groups position themselves on DNA, changing the way in which the genome is read in the cell.

Source: Institut Pasteur

‘Junk Cells’ Actually Have a Powerful Role against Malaria

Red blood cell Infected with malaria parasites. Colourised scanning electron micrograph of red blood cell infected with malaria parasites (teal). The small bumps on the infected cell show how the parasite remodels its host cell by forming protrusions called ‘knobs’ on the surface, enabling it to avoid destruction and cause inflammation. Uninfected cells (red) have smoother surfaces. Credit: NIAID

Researchers from The Australian National University (ANU) have discovered a previously unknown ability of a group of immune system cells, known as Atypical B cells (ABCs), to fight infectious diseases such as malaria.

The discovery, published in Science Immunology, provides new insight into how the immune system fights infections and brings scientists a step closer to harnessing the body’s natural defences to combat malaria.

The scientists say ABCs could also be key to developing new treatments for chronic autoimmune conditions such as lupus. According to the researchers, ABCs have long been associated with malaria, as malaria patients have more of these cells in their system compared to the general population.

“In this study, we wanted to understand the mechanisms that drive the creation of ABCs in the immune system, but also find out whether these cells are good or bad for us when it comes to fighting infection,” lead author Dr Xin Gao, from ANU, said.

“Although ABCs are known to contribute to chronic inflammatory diseases and autoimmunity, we’ve discovered a previously unknown ability of these cells to fight disease. In this sense, ABCs are like a double-edged sword.

“Contrary to past belief, ABCs are not junk cells; they are more important than we thought.

“Our research found that ABCs are also instrumental in developing T follicular helper cells. These helper cells generate powerful antibodies that help the body fight malaria parasites.

“Antibodies can block parasites in the blood as they travel from the site of the infectious mosquito bite to the liver, where the infection is first established.”

In 2022, malaria killed more than 600 000 people worldwide. Although the disease is preventable and curable, scientists face an uphill battle to find long-lasting treatments as malaria parasites continue to find new ways to build resistance to current therapies.

Using gene-editing technology on mice, the ANU researchers discovered a gene called Zeb2 is crucial to the production of ABCs.

“We found that manipulating the Zeb2 gene disrupted the creation of ABCs in the immune system,” study co-author Professor Ian Cockburn, from The ANU John Curtin School of Medical Research, said.

“Importantly, we found that mice without the Zeb2 gene were unable to control malaria infection.

“Therefore, the findings show that ABCs play a crucial role in fighting malaria infections.”

The researchers say targeting ABCs could also pave the way for new treatments for certain autoimmune diseases such as lupus.

“ABCs also appear in large numbers in many autoimmune diseases, including lupus, which can be life-threating in severe cases,” Professor Cockburn said.

“By developing a better understanding of the role of ABCs in the immune system and the cells’ role in fighting disease, it could bring us a step closer to one day developing new and more effective therapies.”

Source: Australian National University

Understanding How T Cells Target Tuberculosis will Enhance Vaccines and Therapies

Tuberculosis bacteria. Credit: CDC

La Jolla Institute for Immunology (LJI) is working to guide the development of new tuberculosis vaccines and drug therapies. Now a team of LJI scientists has uncovered important clues to how human T cells combat Mycobacterium tuberculosis, the bacterium that causes TB. Their findings were published recently in Nature Communications.

“This research gives us a better understanding of T cell responses to different stages in tuberculosis infection and helps us figure out is there are additional diagnostic targets, vaccine targets, or drug candidates to help people with the disease,” says LJI Research Assistant Professor Cecilia Lindestam Arlehamn, PhD, who led the new research in collaboration with LJI Professors Bjoern Peters, PhD, and Alessandro Sette, Dr.Biol.Sci.

The urgent need for TB research

According to the World Health Organization, more than 1.3 million people died of TB in 2022, making it the second-leading infectious cause-of-death after COVID. “TB is a huge problem in many countries,” says Lindestam Arlehamn.

Currently, a vaccine called bacille Calmette-Guerin (BCG) protects against some severe cases of TB. Unfortunately, BCG doesn’t consistently prevent cases of pulmonary TB, which can also be deadly.

Although there are drug treatments for TB, more and more cases around the world have proven drug resistant.

To help stop TB, Lindestam Arlehamn and her colleagues are learning from T cells. Instead of targeting an entire pathogen, T cells look for specific markers, called peptides sequences, that belong to the pathogen.

When a T cell recognises a certain part of a pathogen’s peptide sequence, that area is termed an “epitope.”

Uncovering T cell epitopes gives scientists vital information on how vaccines and drug treatments might take aim at the same epitopes to stop a pathogen.

T cells take aim at a range of TB epitopes

For the new study, the researchers worked with samples from patients who were mid-treatment for active TB. These samples came from study participants in Peru, Sri Lanka, and Moldova.

By looking at T cells in patients from three different continents, the researchers hoped to capture a wide diversity of genetics and environmental factors that can affect immune system activity.

In their analysis, the LJI team uncovered 137 unique T cell epitopes. They found that 16% of these epitopes were targeted by T cells found in two or more patients. The immune system appeared to be working hard to zoom in on these epitopes.

Going forward, Lindestam Arlehamn’s laboratory will investigate which of these epitopes may be promising targets for future TB vaccines and drug therapies.

A step toward better diagnostics

The new study is also a step toward catching TB cases before they turn deadly.

Because Mycobacterium tuberculosis is an airborne bacteria, a person can be exposed without ever realizing it. Once exposed, many people go months or years without any symptoms.

This inactive, or “latent,” TB can turn into active TB if a person’s immune system weakens, for example, during pregnancy or due to an infection such as HIV.

For the new study, the researchers also compared samples from active TB patients with samples from healthy individuals.

The scientists uncovered key differences in T cell reactivity between the two groups.

“For the first time, we could distinguish people with active TB versus those that have been exposed to TB – or unexposed individuals,” says Lindestam Arlehamn.

Lindestam Arlehamn says it may be possible to develop diagnostics that detect this tell-tale T cell reactivity that marks a person’s shift from latent to active TB. “Can we use this peptide pool to look for high-risk individuals and try and follow them over time?” she says.

Source: La Jolla Institute for Immunology

COVID did not get Weaker – Our Immune Systems got Stronger, Large Scale Study Suggests

Image by Fusion Medical on Unsplash

Researchers have shown that the reduced mortality from COVID is not necessarily due to the fact that later variants, such as Omicron, have been less severe. Rather, the reduced mortality seems to be due to several other factors, such as immunity from previous vaccinations and previous infections. The study is published in the latest issue of Lancet Regional Health Europe.

The researchers at Karolinska Institutet, together with partners in the EuCARE project, conducted a study using patient data from more than 38 500 hospitalised patients with COVID, from the start of the pandemic to October 2022. The data comes from hospitals in ten countries, including two outside Europe.

The data showed that in-hospital mortality decreased as the pandemic progressed, especially since Omicron became the dominant variant. However, when the researchers modelled the mortality rates for different variants (pre-Alpha, Alpha, Delta and Omicron) and took into account factors such as age, gender, comorbidity, vaccination status and time period, they saw far fewer differences and weaker associations. They also saw differences between age groups, highlighting the importance of conducting separate analyses for different age groups. 

“Overall, our findings suggest that the observed reduction in mortality during the pandemic is due to multiple factors such as immunity from vaccination and previous infections, and not necessarily tangible differences in inherent severity,” says Pontus Hedberg, first author of the study. 

Omicron variant no less severe 

Understanding the disease course and outcomes of patients hospitalised with COVID during the pandemic is important to guide clinical practice and to understand and plan future resource use for COVID. A particularly interesting finding is that the inherent severity of Omicron has not necessarily been significantly reduced, but that other factors are behind the reduction in mortality. 

“The fact that Omicron can cause severe disease was seen in Hong Kong, for example, where the population had low immunity from previous infections and low vaccination coverage. In Hong Kong there was a relatively high mortality from Omicron,” says Pontus Hedberg. 

Highlights the importance of protecting the elderly and those with underlying diseases

The main applications of the study results going forward are the continued need to protect the elderly and patients with other underlying disease from severe disease outcomes through vaccination against COVID, even though new virus variants may appear less virulent. The results are also important for understanding trends in mortality in hospitalised patients with COVID and thus planning for resource use in hospital care.

Larger multinational collaborative projects like this are of great value to increase the generalisability of studies and not least to promote international collaboration also for future pandemic or epidemic scenarios.

Source: Karolinska Institutet

Switching to Vegan or Keto Diets Impacts Immune System

Photo by Pixabay:

Researchers at the National Institutes of Health observed rapid and distinct immune system changes in a small study of people who switched to a vegan or a ketogenic (“keto”) diet. They found that the vegan diet prompted responses linked to innate immunity while the keto diet prompted responses associated with adaptive immunity. Metabolic changes and shifts in the participants’ microbiomes were also observed. More research is needed to determine if these changes are beneficial or detrimental and what effect they could have on nutritional interventions for diseases such as cancer or inflammatory conditions.

Scientific understanding of how different diets impact the human immune system and microbiome is limited. Therapeutic nutritional interventions, which involve changing the diet to improve health, are not well understood, and few studies have directly compared the effects of more than one diet. The keto diet is a low-carbohydrate diet that is generally high in fat. The vegan diet eliminates animal products and tends to be high in fibre and low in fat.

The study was conducted by researchers from the NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the Metabolic Clinical Research Unit in the NIH Clinical Center.

The 20 participants were diverse with respect to ethnicity, race, gender, body mass index (BMI), and age. Participants sequentially ate vegan and keto diets for two weeks, in random order. Each person ate as much as desired of one diet (vegan or keto) for two weeks, followed by as much as desired of the other diet for two weeks. People on the vegan diet, which contained about 10% fat and 75% carbohydrates, chose to consume fewer calories than those on the keto diet, which contained about 76% fat and 10% carbohydrates. Throughout the study period, blood, urine, and stool were collected for analysis.

The effects of the diets were examined using a “multi-omics” approach that analysed multiple data sets to assess the body’s biochemical, cellular, metabolic, and immune responses, as well as changes to the microbiome.

Participants remained on site for the entire month-long study, allowing for careful control of the dietary interventions. Switching exclusively to the study diets caused notable changes in all participants.

The vegan diet significantly impacted pathways linked to the innate immune system, including antiviral responses. On the other hand, the keto diet led to significant increases in biochemical and cellular processes linked to adaptive immunity, such as pathways associated with T and B cells.

The keto diet affected levels of more proteins in the blood plasma than the vegan diet, as well as proteins from a wider range of tissues, such as the blood, brain and bone marrow. The vegan diet promoted more red blood cell-linked pathways, including those involved in heme metabolism, which could be due to the higher iron content of this diet.

Additionally, both diets produced changes in the microbiomes of the participants, causing shifts in the abundance of gut bacterial species that previously had been linked to the diets.

The keto diet was associated with changes in amino acid metabolism – an increase in human metabolic pathways for the production and degradation of amino acids and a reduction in microbial pathways for these processes – which might reflect the higher amounts of protein consumed by people on this diet.

The distinct metabolic and immune system changes caused by the two diets were observed despite the diversity of the participants, which shows that dietary changes consistently affect widespread and interconnected pathways in the body. More study is needed to examine how these nutritional interventions affect specific components of the immune system. According to the authors, the results of this study demonstrate that the immune system responds surprisingly rapidly to nutritional interventions. The authors suggest that it may be possible to tailor diets to prevent disease or complement disease treatments, such as by slowing processes associated with cancer or neurodegenerative disorders.

Source: NIH/National Institute of Allergy and Infectious Diseases

Overactive Complement System Causes Long Covid

Photo by Andrea Piacquadio:

A new study from the University of Zurich (UZH) has revealed that the complement system plays an important role in Long Covid, a common sequela of SARS-CoV-2 infection. The findings, published in Science, show that the complement system ends up damaging tissue and blood cells even after the original infection has ended.

A significant proportion of individuals infected with SARS-CoV-2 develop long-lasting symptoms with a wide range of manifestations. The causes and disease mechanisms of Long Covid are still unknown, and there are no diagnostic tests or targeted treatments.

Part of the immune system active for too long

A team of researchers led by Onur Boyman, professor of immunology at UZH and Director of the Department of Immunology at the University Hospital Zurich (USZ), has implicated the complement system. It is part of the innate immune system and normally helps to fight infections and eliminate damaged and infected body cells.

“In patients with Long Covid, the complement system no longer returns to its basal state, but remains activated and, thus, also damages healthy body cells,” says Boyman.

Continued activation of complement system damages tissue and blood cells

The researchers followed 113 COVID patients for up to one year after their acute SARS-CoV-2 infection and compared them with 39 healthy controls.

After six months, 40 patients had active Long Covid disease.

More than 6500 proteins in the blood of the study participants were analysed both during the acute infection and six months later.

“The analyses of which proteins were altered in Long Covid confirmed the excessive activity of the complement system. Patients with active Long Covid disease also had elevated blood levels indicating damage to various body cells, including red blood cells, platelets and blood vessels,” explains Carlo Cervia-Hasler, a postdoctoral researcher in Boyman’s team and first author of the study.

Bioinformatics recognises protein patterns

The measurable changes in blood proteins in active Long Covid indicate an interaction between proteins of the complement system, which are involved in blood clotting and the repair of tissue damage and inflammation.

In contrast, the blood levels of Long Covid patients who recovered from the disease returned to normal within six months.

Active Long Covid is therefore characterised by the protein pattern in the blood.

The blood markers were discovered using bioinformatics methods in collaboration with Karsten Borgwardt during his time as a professor at ETH Zurich.

“Our work not only lays the foundation for better diagnosis, but also supports clinical research into substances that could be used to regulate the complement system. This opens up new avenues for the development of more targeted therapies for patients with Long Covid,” Onur Boyman said.

Source: University of Zurich

Yet Another Impact of High-fat Diets: Immune Changes

Photo by Patrick Fore on Unsplash

A new study from UC Riverside has added more reasons to stick to New Year’s diet resolutions: it showed that that high-fat diets affect genes linked not only to obesity, colon cancer and irritable bowels, but also to the immune system, brain function, and potentially COVID risk.

While other studies have examined the effects of a high-fat diet, this one is unusual in its scope. UCR researchers fed mice three different diets over the course of 24 weeks where at least 40% of the calories came from fat. Then, they looked not only at the microbiome, but also at genetic changes in all four parts of the intestines.

One group of mice ate a diet based on saturated fat from coconut oil, another got a monounsaturated, modified soybean oil, a third got an unmodified soybean oil high in polyunsaturated fat. Compared to a low-fat control diet, all three groups experienced concerning changes in gene expression, the process that turns genetic information into a functional product, such as a protein.

Plant-based or not, high-fat is bad

“Word on the street is that plant-based diets are better for you, and in many cases that’s true. However, a diet high in fat, even from a plant, is one case where it’s just not true,” said Frances Sladek, a UCR cell biology professor and senior author of the new study.

The study, published in Scientific Reports, documents the many impacts of high-fat diets. Some of the intestinal changes did not surprise the researchers, such as major changes in genes related to fat metabolism and the composition of gut bacteria. For example, they observed an increase in pathogenic E. coli and a suppression of Bacteroides, which helps protect the body against pathogens.

Other observations were more surprising, such as changes in genes regulating susceptibility to infectious diseases. “We saw pattern recognition genes, ones that recognise infectious bacteria, take a hit. We saw cytokine signalling genes take a hit, which help the body control inflammation,” Sladek said. ‘So, it’s a double whammy. These diets impair immune system genes in the host, and they also create an environment in which harmful gut bacteria can thrive.”

The team’s previous work with soybean oil documents its link to obesity and diabetes, both major risk factors for COVID. This paper now shows that all three high-fat diets increase the expression of ACE2 and other host proteins that are used by COVID spike proteins to enter the body.

Additionally, the team observed that high-fat food increased signs of stem cells in the colon. “You’d think that would be a good thing, but actually they can be precursors to cancer,” Sladek said.

In terms of effects on gene expression, coconut oil showed the greatest number of changes, followed by the unmodified soybean oil. Differences between the two soybean oils suggest that polyunsaturated fatty acids in unmodified soybean oil, primarily linoleic acid, play a role in altering gene expression.

Negative changes to the microbiome in this study were more pronounced in mice fed the soybean oil diet. This was unsurprising, as the same research team previously documented other negative health effects of high soybean oil consumption.

Soybeans are fine, but watch the oil

In 2015, the team found that soybean oil induces obesity, diabetes, insulin resistance, and fatty liver in mice. In 2020, the researchers team demonstrated the oil could also affect genes in the brain related to conditions like autism, Alzheimer’s disease, anxiety, and depression.

Interestingly, in their current work they also found the expression of several neurotransmitter genes were changed by the high fat diets, reinforcing the notion of a gut-brain axis that can be impacted by diet.

The researchers have noted that these findings only apply to soybean oil, and not to other soy products, tofu, or soybeans themselves. “There are some really good things about soybeans. But too much of that oil is just not good for you,” said UCR microbiologist Poonamjot Deol, who was co-first author of the current study along with UCR postdoctoral researcher Jose Martinez-Lomeli.

Also, the studies were conducted using mice, and mouse studies do not always translate to the same results in humans. However, humans and mice share 97.5% of their working DNA. Therefore, the findings are concerning, as soybean oil is the most commonly consumed oil in the United States, and is increasingly being used in other countries, including Brazil, China, and India.

By some estimates, Americans tend to get nearly 40% of their calories from fat, which mirrors what the mice were fed in this study. “Some fat is necessary in the diet, perhaps 10 to 15%. Most people though, at least in this country, are getting at least three times the amount that they need,” Deol said.

Readers should not panic about a single meal. It is the long-term high-fat habit that caused the observed changes. Recall that the mice were fed these diets for 24 weeks. “In human terms, that is like starting from childhood and continuing until middle age. One night of indulgence is not what these mice ate. It’s more like a lifetime of the food,” Deol said.

That said, the researchers hope the study will cause people to closely examine their eating habits.

Source: University of California – Riverside

Immune Antifungal Protein Exacerbates Autoimmune Diseases

Irritable bowel syndrome. Credit: Scientific Animations CC4.0

An immune system protein that normally guards against fungal infections is also responsible for exacerbating certain autoimmune diseases such as irritable bowel disease (IBS), type 1 diabetes, eczema and other chronic disorders, new research from The Australian National University (ANU) has found.

The discovery, published in Science Advances, could pave the way for new and more effective drugs, without the nasty side effects of existing treatments.

In addition to helping to manage severe autoimmune conditions, the breakthrough could also help treat all types of cancer.

The scientists have discovered a previously unknown function of the protein, known as DECTIN-1, which in its mutated state limits the production of T regulatory cells.

These ‘guardian’ Treg cells are crucial to preventing autoimmune disease because they suppress the effects of a hyperactive immune system.

“Although the DECTIN-1 protein helps to fight fungal infections, in its mutated state it’s also responsible for exacerbating severe autoimmune disease,” lead author Dr Cynthia Turnbull, from ANU, said.

“Understanding how and why the mutated version of this protein causes autoimmunity in patients brings us a step closer to developing more effective drugs and offers new hope to more than one million Australians who suffer from some form of autoimmune disease.”

The scientists believe they can control the immune system by turning the DECTIN-1 protein on and off, like a light switch.

“Turning on the protein would lower the intensity of the immune system’s defensive response which would help to treat conditions such as autoimmune disease,” Professor Carola Vinuesa, from the Francis Crick Institute, said.

“On the other hand, turning off the protein could give the immune system a boost, sending its defensive mechanisms into overdrive and allowing the body to treat an entirely different set of diseases.

“The findings are exciting because there haven’t been many discoveries of so-called modifier proteins such as DECTIN-1, which can change the way the immune system behaves to the extent it can either cause a disease or prevent it.”

According to Dr Turnbull, this means DECTIN-1 could play a key role in treating cancer.

“Cancer cells can disguise themselves by releasing certain proteins and chemicals into the body that essentially render them invisible from the immune system’s natural defences,” she said.

“We think that by using drugs to turn off the DECTIN-1 protein, in combination with existing therapies, we can activate the immune system and help it identify and attack the cancerous cells.”

Current treatments for autoimmune?disease aren’t very effective and have a lot of damaging side effects.

This is because the majority of existing treatments suppress the entire immune system rather than targeting a specific area.

“That means it might not fix the exact problem behind the patient’s disease and could inadvertently make them vulnerable to infections. Many people on these kinds of treatments also get bacterial, fungal and viral infections which can make their autoimmunity worse,” Professor Vinuesa said.

Mutation found in family

By examining the DNA of a Spanish family, the researchers discovered the DECTIN-1 mutation was responsible for exacerbating the severity of a chronic autoimmune disease suffered by the family’s only child.

“We found the family was also carrying a mutated version of another immune system protein known as CTLA-4. The CTLA-4 mutation prevents guardian cells from working properly and is known to cause severe autoimmune disease in about 60 to 70 per cent of people who carry it in their DNA,” Dr Pablo Canete, from the University of Queensland, said.

“Strangely, the remaining 30 to 40 per cent of the population who carry this mutated protein don’t develop disease.

“We discovered the family’s only child had both the DECTIN-1 mutation and the CTLA4 mutation, while his parents had only one of each. This helped us identify why the child, who is now in his twenties, was the only person in the family to develop severe autoimmunity, ending a 20-year-long mystery behind the cause of his disease.

“By discovering the existence of mutated versions of modifier proteins such as DECTIN-1, we finally have an explanation for why some people develop severe autoimmune diseases while others don’t, even if they inherit gene mutations passed down from family members.”

Source: Australian National University