Dementia usually affects older people, so when it occurs in middle age, it can be hard to recognise. The most common form is frontotemporal dementia (FTD), which is often mistaken for depression, schizophrenia, or Parkinson’s disease before the correct diagnosis is reached.
Now, as part of an NIH-funded study, researchers at UC San Francisco have found some clues about how FTD develops that could lead to new diagnostics and get more patients into clinical trials. The findings appear in Nature Aging on May 16.
The team measured more than 4000 proteins found in spinal tap fluid from 116 FTD patients and compared them to those from 39 of their healthy relatives. All 116 patients had inherited forms of FTD, enabling researchers to study the disease in living people with confirmed diagnosis, something that isn’t possible in non-inherited FTD cases, which can only be confirmed after death.
The composition of the proteins that changed in FTD suggest that these patients have problems with RNA regulation along with defects that affect connections in their brains. These proteins, researchers think, could be the first specific markers for FTD that emerge as the disease develops in middle age.
FTD is the most common form of dementia for people under 60. Because it occurs in younger people, it is often misdiagnosed as depression, early-onset Alzheimer’s, Parkinson’s, or a psychiatric condition. It takes an average of 3.6 years for patients to get an accurate diagnosis. There is no cure, and there are no treatments to slow or stop disease progression. It is distinct from Alzheimer’s in 3 major ways:
FTD features a gradual decline in behavior, language, or movement, but memory is intact.
It usually strikes younger people, between 45 and 65 years of age, and is less likely to strike after 65.
It’s less common, affecting 60 000 people in the U.S. (Alzheimer’s affects 6.7 million Americans).
“FTD affects people in the prime of their lives, stripping them of their independence,” said Rowan Saloner, PhD, professor in the UCSF Memory and Aging Center and corresponding author of the paper. “But there’s no definitive way to diagnose it in living patients, unlike other dementias like Alzheimer’s disease.”
“If we’re able to identify FTD early on, perhaps using some of the proteins we’ve identified, we can direct patients to the right resources, get them into the right therapeutic trials, and, ultimately, we hope, provide them with precision treatments.”
A new study has uncovered a surprising link between Alzheimer’s disease and Herpes Simplex Virus-1 (HSV-1).
Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH
A new study led by Dr Or Shemesh at the Hebrew University of Jerusalem has uncovered a surprising connection between Alzheimer’s disease and the Herpes Simplex Virus-1 (HSV-1). The research team used advanced techniques to identify 19 HSV-1-related proteins in the brains of people with Alzheimer’s, across all stages of the disease. This discovery, published in Cell Reports, strengthens the growing evidence that infections like HSV-1 might play a role in the development and progression of Alzheimer’s.
One key finding was the increased activity of a herpesvirus protein called ICP27, which became more prominent as the disease advanced. This protein was found to occupy the same space as tau, a brain protein that becomes harmful when it undergoes changes in Alzheimer’s disease, but it did not appear near amyloid plaques, another hallmark of the illness. This suggests that HSV-1 may directly affect tau and contribute to the changes seen in Alzheimer’s.
The team’s experiments with human brain organoids derived from stem cells revealed that HSV-1 infection can increase tau modifications at specific sites linked to Alzheimer’s disease.
Remarkably, these modifications seem to help protect brain cells early on by reducing the amount of virus and preventing cell death. However, as the disease progresses, these same processes may contribute to the brain damage associated with Alzheimer’s. The study also highlighted the role of Alzheimer’s pathologies as part of the brain’s natural immune system in this process, focusing on a pathway called cGAS-STING, which influences tau changes.
Dr Shemesh explained, “Our research shows how HSV-1 interacts with the brain and influences the pathologies of Alzheimer’s disease. Early on, the changes in tau may protect brain cells by limiting the virus, but as the disease advances, these same changes could lead to more harm and accelerate neurodegeneration.”
This study provides new insights into how infections and the brain’s immune response may be involved in Alzheimer’s disease. It suggests that targeting viral activity or modifying the immune system’s response could offer new treatment possibilities. While more research is needed to fully understand these processes, these findings open the door to innovative ways to slow or stop the progression of this devastating disease.
The Food and Drug Administration’s approval in 2023 of lecanemab – a novel Alzheimer’s therapy shown in clinical trials to modestly slow disease progression – was met with enthusiasm by many in the field as it represented the first medication of its kind able to influence the disease. But side effects of brain swelling and bleeding emerged during clinical trials that have left some patients and physicians hesitant about the treatment.[Especially considering its $26 500 per year cost – Ed.]
Medications can have somewhat different effects once they are released into the real world with broader demographics. Researchers at Washington University School of Medicine in St. Louis set out to study the adverse events associated with lecanemab treatment in their clinic patients and found that significant adverse events were rare and manageable.
Consistent with the results from carefully controlled clinical trials, researchers found that only 1% of patients experienced severe side effects that required hospitalisation. Patients in the earliest stage of Alzheimer’s with very mild symptoms experienced the lowest risk of complications, the researchers found, helping to inform patients and clinicians as they navigate discussions about the treatment’s risks.
The retrospective study, published in JAMA Neurology, focused on 234 patients with very mild or mild Alzheimer’s disease who received lecanemab infusions in the Memory Diagnostic Center at WashU Medicine, a clinic that specialises in treating patients with dementia.
“This new class of medications for early symptomatic Alzheimer’s is the only approved treatment that influences disease progression,” said Barbara Joy Snider, MD, PhD, a professor of neurology and co-senior author on the study. “But fear surrounding the drug’s potential side effects can lead to treatment delays. Our study shows that WashU Medicine’s outpatient clinic has the infrastructure and expertise to safely administer and care for patients on lecanemab, including the few who may experience severe side effects, leading the way for more clinics to safely administer the drug to patients.”
Lecanemab is an antibody therapy that clears amyloid plaque proteins, extending independent living by 10 months, according to a recent study led by WashU Medicine researchers. Because amyloid accumulation is the first step in the disease, doctors recommend the drug for people in the early stage of Alzheimer’s, with very mild or mild symptoms. The researchers found that only 1.8% of patients with very mild Alzheimer’s symptoms developed any adverse symptoms from treatment compared with 27% of patients with mild Alzheimer’s.
“Patients with the very mildest symptoms of Alzheimer’s will likely have the greatest benefit and the least risk of adverse events from treatment,” said Snider, who led clinical trials for lecanemab at WashU Medicine. “Hesitation and avoidance can lead patients to delay treatment, which in turn increase the risk of side effects. We hope the results help reframe the conversations between physicians and patients about the medication’s risks.”
Hesitation around lecanemab stems from a side effect known as amyloid-related imaging abnormalities, or ARIA. The abnormalities, which typically only affect a very small area of the brain, appear on brain scans and indicate swelling or bleeding. In clinical trials of lecanemab, 12.6% of participants experienced ARIA and most cases were asymptomatic and resolved without intervention. A small percentage (2.8%) experienced symptoms such as headaches, confusion, nausea and dizziness. Occasional deaths have been linked to lecanemab in an estimated 0.2% of patients treated.
The Memory Diagnostic Center began treating patients with lecanemab in 2023 after the drug received full FDA approval. Patients receive the medication via infusions every two weeks in infusion centers. As part of each patient’s care, WashU Medicine doctors regularly gather sophisticated imaging to monitor the brain, which can detect bleeding and swelling with great sensitivity. Lecanemab is discontinued in patients with symptoms from ARIA or significant ARIA without symptoms, and the rare patients with severe ARIA are treated with steroids in the hospital.
In looking back on their patients’ outcomes, the authors found the extent of side effects aligned with those of the trials – most of the clinic’s cases of ARIA were asymptomatic and only discovered on sensitive brain scans used to monitor brain changes. Of the 11 patients who experienced symptoms from ARIA, the effects largely resolved within a few months and no patients died.
“Most patients on lecanemab tolerate the drug well,” said Suzanne Schindler, MD, PhD, an associate professor of neurology and a co-senior author of the study. “This report may help patients and providers better understand the risks of treatment, which are lower in patients with very mild symptoms of Alzheimer’s.”
Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH
UVA Health scientists are calling for clinical trials testing the potential of HIV drugs called NRTIs to prevent Alzheimer’s disease after discovering that patients taking the drugs are substantially less likely to develop the memory-robbing condition.
The researchers, led by UVA’s Jayakrishna Ambati, MD, previously identified a possible mechanism by which the drugs could prevent Alzheimer’s. That promising finding prompted them to analyse two of the nation’s largest health insurance databases to evaluate Alzheimer’s risk among patients prescribed the medications. In one, the risk of developing Alzheimer’s decreased 6% every year the patients were taking the drugs. In the other, the annual decrease was 13%.
“It’s estimated that over 10 million people around the world develop Alzheimer’s disease annually,” said Ambati, founding director of UVA’s Center for Advanced Vision Science and the DuPont Guerry III Professor in the School of Medicine’s Department of Ophthalmology. “Our results suggest that taking these drugs could prevent approximately 1 million new cases of Alzheimer’s disease every year.”
NRTIs restrain inflammasomes
NRTIs, or nucleoside reverse transcriptase inhibitors, are used to prevent the HIV virus from replicating inside the body. But Ambati and his team previously determined that the drugs can also prevent the activation of inflammasomes, important agents of our immune system. These proteins have been implicated in the development of Alzheimer’s disease, so Ambati and his colleagues wanted to see if patients taking the inflammasome-blocking drugs were less likely to develop Alzheimer’s.
To do that, they reviewed 24 years of patient data contained in the U.S. Veterans Health Administration Database – made up heavily of men – and 14 years of data in the MarketScan database of commercially insured patients, which offers a broader representation of the population. They looked for patients who were at least 50 years old and were taking medications for either HIV or hepatitis B, another disease treated with NRTIs. They excluded patients with a previous Alzheimer’s diagnosis.
In total, the researchers identified more than 270 000 patients who met the study criteria and then analysed how many went on to develop Alzheimer’s. Even after adjusting for factors that might cloud the results, such as whether patients had pre-existing medical conditions, the researchers determined that the reduction in risk among patients on NRTIs was “significant and substantial,” they report in a new scientific paper.
The researchers note that patients taking other types of HIV medications did not show the same reduction in Alzheimer’s risk as those on NRTIs. Based on that, they say that NRTIs warrant clinical testing to determine their ability to ward off Alzheimer’s.
If successful, the benefits could be tremendous, as Alzheimer’s rates are climbing dramatically. Nearly 7 million Americans are living with the disease today, but that number is expected to climb to 13 million by 2050. Further, the estimated annual cost of care for Alzheimer’s and other dementias could rise from $360 billion to almost $1 trillion, the Alzheimer’s Association reports.
“We have also developed a new inflammasome-blocking drug called K9, which is a safer and more effective version of NRTIs,” Ambati said. “This drug is already in clinical trials for other diseases, and we plan to also test K9 in Alzheimer’s disease.”
Patients with spastic paraplegia type 15 develop movement disorders during adolescence that may ultimately require the use of a wheelchair. In the early stages of this rare hereditary disease the brain appears to play a major role by over-activating the immune system, as shown by a recent study published in the Journal of Experimental Medicine. The study was led by researchers at the University of Bonn and the German Center for Neurodegenerative Diseases (DZNE). These findings could also be relevant for Alzheimer’s disease and other neurodegenerative conditions.
Spastic paraplegia type 15 is characterised by the progressive loss of neurons in the central nervous system that are responsible for controlling movement. Initial symptoms typically appear in late childhood, manifesting first in the legs in the form of uncontrollable twitching and paralysis. “What exactly causes these neurons to die is still not fully understood,” explains Professor Elvira Mass from the LIMES Institute at the University of Bonn. “In this study, we investigated the potential role of the immune system in this process.”
Professor Mass and Dr. Marc Beyer from the DZNE, together with Professor Ralf Stumm from University Hospital Jena, served as the study’s lead investigators, bringing together extensive experience to study this rare hereditary disease. The condition is triggered by a defect in the so-called SPG15 gene, which contains instructions for building a protein. But due to that defect, the protein cannot be produced.
Severe inflammation preceding the onset of cell damage
In their experiments the researchers used mice that shared the same genetic defect. “There was existing evidence that inflammatory processes in the brain play a role in development of the disease,” Dr Beyer explains, “So we studied microglia, which are the immune cells of the brain, and also whether immune cells in bone marrow are additionally involved in the inflammatory response.”
White blood cells form in bone marrow and can reach the brain via the bloodstream. Microglia, on the other hand, have already migrated to the brain during embryonic development. The researchers succeeded in specifically labelling the cells derived from bone marrow with a fluorescent dye. “This makes them distinguishable from microglia under a microscope,” Mass elaborates. “This allowed us to study the interaction between these two cell populations at the individual cell level.”
Analyses show that the microglia cells undergo dramatic changes in very early stages of the disease, long before any neuronal damage is identifiable. The cells are thereby altered into “disease-associated microglia.” These release messenger substances which, among other things, call for the help of cytotoxic “killer” T cells from the bone marrow that destroy other cells. The two cell types communicate with each other via signaling molecules, and their interplay drives the inflammatory process.
New therapeutic possibilities
“Our data suggest that the early stages of the disease are driven not by the loss of motor neurons but rather by the severe, early immune response,” Mass relates, “and that finding implies new therapeutic possibilities. Immune suppression drugs could potentially help slow progression of the disease.”
Inflammatory processes in the brain play an important role in Alzheimer’s and other neurodegenerative diseases. Spastic paraplegia is caused by entirely different conditions than dementia, but a very similar disruption of the immune system could be involved in dementia.
A misfolded protein facilitates reliable diagnosis even in the early stages of Parkinson’s disease in body fluids.
Source: CC0
Parkinson’s disease is a neurodegenerative disorder that is usually diagnosed in its late stage on the basis of clinical symptoms, mainly motor disorders. By this point, however, the brain is already severely and irreparably damaged. Moreover, diagnosis is difficult and often incorrect because the disease takes many forms and symptoms overlap with other disorders.
Researchers from the PRODI Center for Protein Diagnostics at Ruhr University Bochum, Germany, and the biotech company betaSENSE have now discovered a biomarker in cerebrospinal fluid (CSF) that facilitates a reliable diagnosis at an early stage and can shed light on the progression of the disease and the effect of a therapy. They report their findings in the journal EMBO Molecular Medicine.
Parkinson’s disease – an unstoppable condition
Parkinson’s disease is characterised by the loss of dopaminergic nerve cells in the brain, typically leading to increasing motor impairments as the symptoms progress. Dopamine supplements can compensate for the loss and temporarily alleviate the symptoms. The misfolding of the key protein alpha-synuclein (αSyn) from α-helical structures to β-sheet-rich structures plays a crucial role in the development of Parkinson’s disease. “These misfoldings make the protein sticky, leading to the formation of larger complexes, so-called oligomers. The oligomers then produce long fibrillar filaments and cause the aggregation of these filaments into macroscopically large Lewy bodies in the brain,” explains Professor Klaus Gerwert, founding and managing director at PRODI and CEO of betaSENSE.
Advanced platform technology
In two independent clinical cohorts with a total of 134 participants, the Bochum-based researchers showed that, with a sensitivity and specificity of well over 90%, this misfolding of αSyn in body fluids is a viable biomarker for the diagnosis of Parkinson’s disease. The research was conducted using cerebrospinal fluid samples from patients at the Parkinson’s centres in Bochum (St. Josef Hospital, Professor Lars Tönges, Professor Ralf Gold) and Kassel (Paracelsus-Elena-Klinik, Dr. Sandrina Weber, Professor Brit Mollenhauer). The measurements were carried out using the patented iRS (immuno-infrared sensor) technology from betaSENSE GmbH.
betaSENSE has already successfully implemented the iRS technology for diagnosing Alzheimer’s disease. In this case, it was shown that the misfolding of the biomarker Aβ can indicate the risk of Alzheimer’s dementia at a later stage with high accuracy up to 17 years before clinical diagnosis. “We have now transferred this approach to Parkinson’s for the misfolding of αSyn,” stresses Klaus Gerwert.
Development of Parkinson’s drugs
In addition to diagnostic applications, the technology can also help to develop new active substances and prove their efficacy in clinical trials.
Neurons in the brain of an Alzheimer’s patient, with plaques caused by tau proteins. Credit: NIH
A study led by researchers in the University of Florida College of Pharmacy has found that a pair of popular glucose-lowering medications may have protective effects against the development of Alzheimer’s disease and related dementias in patients with Type 2 diabetes.
In research published in JAMA Neurology on April 7, UF researchers studied Medicare claims data of older adults with Type 2 diabetes to assess the association among glucagon-like peptide-1 receptor agonists, or GLP-1RAs, sodium-glucose cotransporter-2 inhibitors, or SGLT2is, and the risk of Alzheimer’s disease and related dementias.
The research is supported by funding from the National Institute on Aging and the National Institute of Diabetes and Digestive and Kidney Diseases, both part of the National Institutes of Health.
The data showed a statistically significant association between a lower risk of Alzheimer’s and the use of GLP-1RAs and SGLT2is compared with other glucose-lowering medications. According to the researchers, the findings indicated that the two drugs may have neuroprotective effects for people without diabetes and may help slow the rate of cognitive decline in Alzheimer’s patients.
Serena Jingchuan Guo, MD, PhD, an assistant professor of pharmaceutical outcomes and policy and the study’s senior author, said these findings may point to new therapeutic uses for drugs commonly used to treat Type 2 diabetes and obesity.
“It’s exciting that these diabetes medications may offer additional benefits, such as protecting brain health,” Guo said. “Based on our research, there is promising potential for GLP-1RAs and SGLT2is to be considered for Alzheimer’s disease prevention in the future. As use of these drugs continues to expand, it becomes increasingly important to understand their real-world benefits and risks across populations.”
As the study only included patients with Type 2 diabetes, Guo said next steps include evaluating the effects of the two drugs in broader populations by using recent, real-world data that captures their growing use in clinical settings.
“Future research should focus on identifying heterogeneous treatment effects – specifically, determining which patients are most likely to benefit and who may be at greater risk for safety concerns,” Guo said.
In sports, the connection between head injuries and neurodegenerative diseases such as chronic traumatic encephalopathy, Alzheimer’s disease, and Parkinson’s disease is now well recognised.
Researchers at Tufts University and Oxford University have now uncovered mechanisms that may connect the dots between trauma events and the emergence of disease. They point to latent viruses lurking in most of our brains that may be activated by the jolt, leading to inflammation and accumulating damage that can occur over the ensuing months and years.
The results suggest the use of antiviral drugs as potential early preventive treatments post-head injury. The findings are published in a study in Science Signaling.
The microbiome aids in digestion, immune system development, and protection against harmful pathogens.
But the microbiome also includes dozens of viruses that swarm within our bodies at any given time. Some of these can be potentially harmful, but simply lie dormant within our cells. Herpes simplex virus 1 (HSV-1), found in over 80% of people, and varicella-zoster virus, found in 95% of people, are known to make their way into the brain and sleep within our neurons and glial cells.
Dana Cairns, GBS12, research associate in the Department of Biomedical Engineering and lead author of the study, had found evidence in earlier studies suggesting that activation of HSV-1 from its dormant state triggers the signature symptoms of Alzheimer’s disease in lab models of brain tissue: amyloid plaques, neuronal loss, inflammations, and diminished neural network functionality.
“In that study, another virus – varicella – created the inflammatory conditions that activated HSV-1,” said Cairns. “We thought, what would happen if we subjected the brain tissue model to a physical disruption, something akin to a concussion? Would HSV-1 wake up and start the process of neurodegeneration?”
The link between HSV-1 and Alzheimer’s disease was first suggested by co-author Ruth Itzhaki, visiting professorial fellow at Oxford University, who more than 30 years ago identified the virus in a high proportion of brains from the elderly population. Her subsequent studies suggested that the virus can be reactivated in the brain from a latent state by events such as stress or immunosuppression, ultimately leading to neuronal damage.
Blows to Brain-like Tissue
In the current study, the researchers used a lab model that reconstructs the environment of the brain to better understand how concussions may set off the first stages of virus reactivation and neurodegeneration.
The brain tissue model consists of a 6mm-wide donut-shaped sponge-like material made of silk protein and collagen suffused with neural stem cells, which are then coaxed into mature neurons, growing axons and dendrite extensions and forming a network. Glial cells also emerge from the stem cells to help mimic the brain environment and nurture the neurons.
The neurons communicate with each other through their extensions similarly to how they would communicate in a brain. And just like cells in the brain, they can carry within them the DNA of dormant HSV-1 virus.
After enclosing the brain-like tissue in a cylinder and giving it a sudden jolt atop a piston, mimicking a concussion, Cairns examined the tissue under the microscope over time. Some of the tissue models had neurons with HSV-1, and some were virus-free.
Following the controlled blows, she observed that the infected cells showed re-activation of the virus, and shortly after that the signature markers of Alzheimer’s disease, including amyloid plaques, p-tau (a protein that creates fiber-like “tangles” in the brain), inflammation, dying neurons, and a proliferation of glial cells called gliosis.
More strikes with the pistons on the tissue models mimicking repetitive head injuries led to the same reactions, which were even more severe. Meanwhile, the cells without HSV-1 showed some gliosis, but none of the other markers of Alzheimer’s disease.
The results were a strong indicator that athletes suffering concussions could be triggering reactivation of latent infections in the brain that can lead to Alzheimer’s disease. Epidemiological studies have shown that multiple blows to the head can lead to doubling or even greater chances of having a neurodegenerative condition months or years down the line.
“This opens the question as to whether antiviral drugs or anti-inflammatory agents might be useful as early preventive treatments after head trauma to stop HSV-1 activation in its tracks, and lower the risk of Alzheimer’s disease,” said Cairns.
The problem goes far beyond the concerns for athletes. Traumatic brain injury is one of the most common causes of disability and death in adults, affecting about 69 million people worldwide each year, at an economic cost estimated at $400 billion annually.
“The brain tissue model takes us to another level in investigating these connections between injury, infection, and Alzheimer’s disease,” said David Kaplan, Stern Family Endowed Professor of Engineering at Tufts.
“We can re-create normal tissue environments that look like the inside of a brain, track viruses, plaques, proteins, genetic activity, inflammation and even measure the level of signalling between neurons,” he said. “There is a lot of epidemiological evidence about environmental and other links to the risk of Alzheimer’s. The tissue model will help us put that information on a mechanistic footing and provide a starting point for testing new drugs.”
New research shows that the adult brain can generate new neurons that integrate into key motor circuits. The findings demonstrate that stimulating natural brain processes may help repair damaged neural networks in Huntington’s and other diseases.
“Our research shows that we can encourage the brain’s own cells to grow new neurons that join in naturally with the circuits controlling movement,” said Abdellatif Benraiss, PhD, a senior author of the study, which appears in the journal Cell Reports. “This discovery offers a potential new way to restore brain function and slow the progression of these diseases.” Benraiss is a research associate professor in the University of Rochester Medical Center (URMC) lab of Steve Goldman, MD, PhD, in the Center for Translational Neuromedicine.
Is neuron regeneration in the adult brain possible?
It is now understood that niches in the brain contain reservoirs of progenitor cells capable of producing new neurons. While these cells actively produce neurons during early development, they switch to producing support cells called glia shortly after birth. One of the areas of the brain where these cells congregate is the ventricular zone, which is adjacent to the striatum, a region of the brain devastated by Huntington’s disease.
The idea that the adult brain retains the capacity to produce new neurons, called adult neurogenesis, was first described by Goldman and others in the 1980s while studying neuroplasticity in canaries. Songbirds, like canaries, are unique in the animal kingdom in their ability to lay down new neurons as they learn new songs. The research in songbirds identified proteins—one of which was brain-derived neurotrophic factor (BDNF)—that direct progenitor cells to differentiate and produce neurons.
Further research in Goldman’s lab showed that new neurons were generated when BDNF and another protein, Noggin, were delivered to progenitor cells in the brains of mice. These cells then migrated to a nearby motor control region of the brain—the striatum—where they developed into cells known as medium spiny neurons, the major cells lost in Huntington’s disease. Benraiss and Goldman also demonstrated that the same agents could induce new medium spiny neuron formation in primates.
Rebuilding and reconnecting brain networks
The extent to which newly generated medium spiny neurons integrate into the brain’s networks has remained unclear. The new research, conducted in a mouse model of Huntington’s disease, demonstrates that the newly generated neurons connect with the complex networks in the brain responsible for motor control, replacing the function of the neurons lost in Huntington’s.
The researchers used a genetic tagging method to mark new cells as they were created, which allowed them to follow them over time as they developed new connections. This enabled the researchers to map the connections between the new neurons, their neighbours, and other brain regions. Employing optogenetics techniques, the researchers turned the new cells on and off, confirming their integration into broader brain networks important for motor control.
A new path for Huntington’s disease therapies
The study indicates that a possible treatment for Huntington’s disease would be to encourage the brain to replace lost cells with new, functional ones and restore the brain’s communication pathways. “Taken together with the persistence of these progenitor cells in the adult primate brain, these findings suggest the potential for this regenerative approach as a treatment strategy in Huntington’s and other disorders characterised by the loss of neurons in the striatum,” said Benraiss.
The authors suggest this approach could also be combined with other cell replacement therapies. Research in Goldman’s lab has shown that glial cells called astrocytes also play an important role in Huntington’s disease. These cells do not function properly in the disease and contribute to the impairment of neuronal function. The researchers have found that replacing the diseased glial cells with healthy ones can slow disease progression in a mouse model of Huntington’s. These glial replacement therapies are currently in preclinical development.
An unusual public health policy in Wales may have produced the strongest evidence yet that a vaccine can reduce the risk of dementia. In a new study led by Stanford Medicine, researchers analysing the health records of Welsh older adults discovered that those who received the shingles vaccine were 20% less likely to develop dementia over the next seven years than those who did not receive the vaccine.
The remarkable findings, published April 2 in Nature, support an emerging theory that viruses that affect the nervous system can increase the risk of dementia. If further confirmed, the new findings suggest that a preventive intervention for dementia is already close at hand.
Lifelong infection
Shingles, a viral infection that produces a painful rash, is caused by the same virus that causes chicken pox — varicella-zoster. After people contract chicken pox, usually in childhood, the virus stays dormant in the nerve cells for life. In people who are older or have weakened immune systems, the dormant virus can reactivate and cause shingles.
Dementia affects more than 55 million people worldwide, with an estimated 10 million new cases every year. Decades of dementia research has largely focused on the accumulation of plaques and tangles in the brains of people with Alzheimer’s, the most common form of dementia. But with no breakthroughs in prevention or treatment, some researchers are exploring other avenues — including the role of certain viral infections.
Previous studies based on health records have linked the shingles vaccine with lower dementia rates, but they could not account for a major source of bias: People who are vaccinated also tend to be more health conscious in myriad, difficult-to-measure ways. Behaviors such as diet and exercise, for instance, are known to influence dementia rates, but are not included in health records.
“All these associational studies suffer from the basic problem that people who get vaccinated have different health behaviours than those who don’t,” said Pascal Geldsetzer, MD, PhD, assistant professor of medicine and senior author of the new study. “In general, they’re seen as not being solid enough evidence to make any recommendations on.”
Markus Eyting, PhD, and Min Xie, PhD, postdoctoral scholars in primary care and population health, are the study’s co-lead authors.
A natural experiment
But two years ago, Geldsetzer recognized a fortuitous “natural experiment” in the rollout of the shingles vaccine in Wales that seemed to sidestep the bias. The vaccine used at that time contained a live-attenuated, or weakened, form of the virus.
The vaccination program, which began Sept. 1, 2013, specified that anyone who was 79 on that date was eligible for the vaccine for one year. (People who were 78 would become eligible the next year for one year, and so on.) People who were 80 or older on Sept. 1, 2013, were out of luck — they would never become eligible for the vaccine.
These rules, designed to ration the limited supply of the vaccine, also meant that the slight difference in age between 79- and 80-year-olds made all the difference in who had access to the vaccine. By comparing people who turned 80 just before Sept. 1, 2013, with people who turned 80 just after, the researchers could isolate the effect of being eligible for the vaccine.
The circumstances, well-documented in the country’s health records, were about as close to a randomized controlled trial as you could get without conducting one, Geldsetzer said.
The researchers looked at the health records of more than 280 000 older adults who were 71 to 88 years old and did not have dementia at the start of the vaccination program. They focused their analysis on those closest to either side of the eligibility threshold — comparing people who turned 80 in the week before with those who turned 80 in the week after.
“We know that if you take a thousand people at random born in one week and a thousand people at random born a week later, there shouldn’t be anything different about them on average,” Geldsetzer said. “They are similar to each other apart from this tiny difference in age.”
The same proportion of both groups likely would have wanted to get the vaccine, but only half, those almost 80, were allowed to by the eligibility rules.
“What makes the study so powerful is that it’s essentially like a randomised trial with a control group — those a little bit too old to be eligible for the vaccine — and an intervention group — those just young enough to be eligible,” Geldsetzer said.
Protection against dementia
Over the next seven years, the researchers compared the health outcomes of people closest in age who were eligible and ineligible to receive the vaccine. By factoring in actual vaccination rates — about half of the population who were eligible received the vaccine, compared with almost none of the people who were ineligible — they could derive the effects of receiving the vaccine.
As expected, the vaccine reduced the occurrence over that seven-year period of shingles by about 37% for people who received the vaccine, similar to what had been found in clinical trials of the vaccine. (The live-attenuated vaccine’s effectiveness wanes over time.)
This huge protective signal was there, any which way you looked at the data.”
By 2020, one in eight older adults, who were by then 86 and 87, had been diagnosed with dementia. But those who received the shingles vaccine were 20% less likely to develop dementia than the unvaccinated.
“It was a really striking finding,” Geldsetzer said. “This huge protective signal was there, any which way you looked at the data.”
The scientists searched high and low for other variables that might have influenced dementia risk but found the two groups to be indistinguishable in all characteristics. There was no difference in the level of education between the people who were eligible and ineligible, for example. Those who were eligible were not more likely to get other vaccinations or preventive treatments, nor were they less likely to be diagnosed with other common health conditions, such as diabetes, heart disease and cancer.
The only difference was the drop in dementia diagnoses.
“Because of the unique way in which the vaccine was rolled out, bias in the analysis is much less likely than would usually be the case,” Geldsetzer said.
Nevertheless, his team analyzed the data in alternate ways — using different age ranges or looking only at deaths attributed to dementia, for example — but the link between vaccination and lower dementia rates remained.
“The signal in our data was so strong, so clear and so persistent,” he said.
Stronger response in women
In a further finding, the study showed that protection against dementia was much more pronounced in women than in men. This could be due to sex differences in immune response or in the way dementia develops, Geldsetzer said. Women on average have higher antibody responses to vaccination, for example, and shingles is more common in women than in men.
Whether the vaccine protects against dementia by revving up the immune system overall, by specifically reducing reactivations of the virus or by some other mechanism is still unknown.
Also unknown is whether a newer version of the vaccine, which contains only certain proteins from the virus and is more effective at preventing shingles, may have a similar or even greater impact on dementia.
Geldsetzer hopes the new findings will inspire more funding for this line of research.
“At least investing a subset of our resources into investigating these pathways could lead to breakthroughs in terms of treatment and prevention,” he said.
In the past two years, his team has replicated the Wales findings in health records from other countries, including England, Australia, New Zealand and Canada, that had similar rollouts of the vaccine. “We just keep seeing this strong protective signal for dementia in dataset after dataset,” he said.
But Geldsetzer has set his sights on a large, randomized controlled trial, which would provide the strongest proof of cause and effect. Participants would be randomly assigned to receive the live-attenuated vaccine or a placebo shot.
“It would be a very simple, pragmatic trial because we have a one-off intervention that we know is safe,” he said.
Geldsetzer is seeking philanthropic funding for the trial as the live-attenuated vaccine is no longer manufactured by pharmaceutical companies.
And such a trial might not take long to see results. He pointed to a graph of the Wales data tracking the dementia rates of those who were eligible and ineligible for the vaccine. The two curves began to separate in about a year and a half.