Tag: chemotherapy

Less Is More: Low-Dose Olanzapine Curbs Chemo-Induced Nausea Without the Sedation

A recent clinical trial demonstrates 5mg olanzapine’s safety and efficacy for chemotherapy-induced nausea and vomiting

Researchers from Japan found that a 5mg dose of olanzapine, taken after chemotherapy, significantly reduces nausea and vomiting in breast cancer patients, while minimising sedation and cutting costs. This patient-centred approach could reshape global standards for antiemetic care. Credit: Prof Mitsue Saito from Juntendo University, Japan

Chemotherapy-induced nausea and vomiting can severely impact patients’ quality of life and treatment adherence. In a major clinical trial, researchers from Japan tested whether a low, 5mg dose of olanzapine taken at home after chemotherapy could reduce these side effects without causing heavy sedation. The study found that this approach significantly improved outcomes compared to placebo, offering a safer, more affordable strategy that could reshape supportive cancer care, especially in outpatient and resource-limited settings.

Chemotherapy-induced nausea and vomiting are among the most distressing side effects of anti-cancer treatment, particularly for those receiving highly emetogenic regimens such as anthracycline plus cyclophosphamide combinations. This major side effect compromises a patient’s quality of life and willingness to continue therapy. Therefore, there is a crucial need to devise an effective antiemetic management approach for optimizing cancer care and patient well-being.

Against this backdrop, a new study, led by Professor Mitsue Saito and Dr. Hirotoshi Iihara from Japan, was made available online on June 17, 2025, and published in Volume 26, Issue 7 of the journal The Lancet Oncology on July 1, 2025, examined whether a 5mg dose of olanzapine taken at home after chemotherapy could reduce nausea and vomiting in patients with breast cancer while minimising the sedative effects associated with the standard 10mg dose.

“While multiple studies have examined 10mg of olanzapine and confirmed its effectiveness for nausea control, at this dose it often causes sedation, raising safety concerns,” explains lead author Prof Saito. “Beyond the commonly observed sedation, olanzapine at the 10 mg dose can cause serious adverse effects, including sedative effects such as daytime sleepiness and loss of consciousness.”

“The study was inspired in part by three patients with breast cancer who attended an antiemetic guideline meeting at MASCC 2015 in Copenhagen. They spoke about the burdensome sedative side effects of olanzapine, a concern that helped shape the trial’s patient-centred design,” says Prof Saito.

This phase 3, double-blind, placebo-controlled trial enrolled 500 female patients with breast cancer in Japan receiving outpatient anthracycline plus cyclophosphamide-based chemotherapy. Participants were randomly assigned to receive either olanzapine 5mg or placebo in combination with standard triplet antiemetic therapy (palonosetron, dexamethasone, and an NK-1 receptor antagonist). The olanzapine 5mg was taken at home after chemotherapy to help avoid sedation during hospital travel or treatment.

“This study uniquely investigates the timing of olanzapine 5mg administration, given within 5 hours post-chemotherapy administration and before the evening meal, to reduce sedation during hospital visits and transportation. This approach takes into account the onset of nausea and vomiting reported in previous studies. Among highly emetogenic chemotherapies, there is a significant difference between cisplatin, which usually requires hospitalisation for treatment, and other chemotherapies such as anthracycline-based regimens that are typically administered on an outpatient basis,” says Dr Iihara. The primary endpoint of the study was to investigate the proportion of patients achieving complete response, defined as no vomiting and no rescue medication use during the overall phase (0–120 hours post-anthracycline plus cyclophosphamide initiation).

The results demonstrated significant improvement, with 58.1% of patients in the olanzapine 5mg group achieving a complete response during the first 5 days after chemotherapy, compared to only 35.5% in the placebo group. Benefits also extended to delayed nausea and vomiting across a 7-day observation period.

While some patients reported drowsiness, the incidence of severe or very severe concentration impairment was low, occurring in 10% of patients in the olanzapine 5mg group vs 14% in the placebo group. Additionally, no major adverse events were observed in either group, indicating that there were no treatment-related deaths in either group.

The olanzapine 5mg dose offers an important financial and clinical advantage over the commonly used 10mg. By reducing side effects and cost, this strategy may make antiemetic treatment more accessible, particularly in lower-resource settings.

These new findings suggest that an olanzapine 5mg regimen, especially when administered after chemotherapy, can be just as effective, with fewer side effects. Although the study focused on Japanese women with breast cancer, the results are expected to influence international practices and future guideline updates.

In addressing both physical and financial toxicity and putting patients’ voices at the centre of the research, this trial represents more than a treatment tweak. It’s a step toward more humane, equitable cancer care.

Source: Juntendo University

New CANSA and ALVI ARMANI Partnership Offers Hair Restoration Support for Cancer Survivors

Restorative programme helps post-cancer treatment patients regain hair, confidence, and quality of life after facing cancer 

Photo by Natasha Brazil on Unsplash

The Cancer Association of South Africa (CANSA) has partnered with internationally renowned hair restoration clinic Alvi Armani South Africa, with head offices in Beverly Hills Los Angeles, to launch an initiative offering complimentary consultations and assessments to those recovering or recovered from cancer.

For many, completing cancer treatment is an experience that brings immense relief. However, it doesn’t always mark the end of the emotional journey. While chemotherapy and radiation often save lives, they can leave lasting reminders – and hair loss is among the most visible.

Cindy Pretorius, a cancer survivor who was diagnosed with basal cell carcinoma, an invasive skin cancer knows firsthand how the impact of the disease affects not just self-confidence but self-worth. After the cancer was removed, the surgery left lasting and visible scarring on her hairline. A hairline that was subsequently treated and restored through a minimally invasive hair transplant at Alvi Armani South Africa. “The team at Alvi Armani restored not only my hairline, but also my confidence,” said Pretorius.

Launching in August 2025, the initiative will offer CANSA-affiliated patients in recovery access to complimentary, in-depth, and personalised consultations. This may include scalp density and mapping assessments, as well as checks for lingering treatment effects. Where needed, survivors will receive advice and support with restorative hair treatments or transplants at Alvi Armani South Africa – offering significant financial relief and a renewed sense of hope.

“This isn’t about vanity. It’s about healing the whole person,” notes Dr Kashmal Kalan, Medical Director of Alvi Armani South Africa. “Unfortunately, even when cancer treatments end, the physical and emotional recovery continues. Many individuals in remission are confronted with reminders every time they look in the mirror and see someone who still looks like a patient, often making it difficult to reconnect with the person they were before cancer.”

For those recovering from cancer, the devastation of hair loss can continue to weigh heavily on their mental well-being. Studies show that persistent thinning, patchiness, or recession after treatment can fuel anxiety, depression, and social withdrawal. Even when remission is achieved, hair regrowth can be slow, and this gap between survival and self-image can take a heavy toll.

“Hair plays an important role in how we express identity; by restoring it, we help people feel like themselves again – more confident to re-enter public life, apply for jobs, or socialise without feeling marked by illness,” he explains.

In cases where hair loss is permanent, transplants using Alvi Armani’s minimally invasive Vitruvian or Maximus follicular unit extraction (FUE) technique may also be performed. Recognised as global leaders in hair transplant procedures, Alvi Armani’s network – spanning Beverly Hills, Salt Lake City, Phoenix, San Diego, Buenos Aires, Montevideo, and Johannesburg – all use state of the art protocols, ensuring that South African patients receive the same world-class standard of care they would get at any other Alvi Armani clinic globally.

“People who’ve overcome cancer deserve more than just a life saved. They deserve the chance to live it fully, with confidence and joy. We’re extremely proud to walk this journey with them, and to help them reclaim their full sense of self.”

Alvi Armani are committing extensive financial and medical resources to support the initiative. A patient referral and screening process is in place to ensure clinical suitability, but any CANSA-affiliated person in remission may apply directly and will be guided accordingly.

CANSA and Alvi Armani will also collaborate at national events such as CANSA Relay For Life, and the CANSA High Tea, where participants will receive expert advice on scalp health, treatment options, and realistic expectations around regrowth.

“When you’ve fought so hard to stay alive, the last thing you want is to be reminded daily of what you lost. This partnership is ultimately about giving people that final piece of the puzzle back, so they can look in the mirror and not only see what they’ve overcome, but truly see themselves again,” concludes Dr Kalan.

“At CANSA, we understand that the cancer experience doesn’t end with treatment – healing also means restoring dignity, self-confidence, and quality of life. Our partnership with Alvi Armani South Africa reflects our commitment to holistic survivorship care. By offering complimentary consultations and access to world-class restorative hair solutions, we’re helping survivors reclaim not only their appearance but also their sense of self,” says Makoma Raolane, CANSA’s Sustainability Manager.

Individuals affected by cancer who are interested in the initiative can contact Alvi Armani South Africa directly, referencing their affiliation with CANSA, to schedule a complimentary consultation.

For more information, visit https://cansa.org.za/ and https://alviarmani.co.za/

Study Finds 1 in 6 Cancer Medications in Sub-Saharan Africa Are Defective

Source: Unsplash CC0

Serious quality defects were found in a significant number of cancer medications from sub-Saharan Africa, according to new research from the University of Notre Dame.

For the study published in The Lancet Global Health, researchers collected different cancer medications from Cameroon, Ethiopia, Kenya and Malawi and evaluated whether each drug met regulatory standards. Researchers considered a variety of factors, including appearance, packaging, labelling and, most importantly, the assay value.

The assay value is the quantity of active pharmaceutical ingredient (API) found in each drug. To meet safety standards, most products should be within a range of 90 to 110% of the right amount of API. Researchers measured the API content of each product and compared that number to what was designated on the medication packaging.

“It is important that cancer medications contain the right amount of the active ingredients so the patient gets the correct dose,” said Marya Lieberman, professor of chemistry and biochemistry at Notre Dame and lead author of the study. “If the patient’s dose is too small, the cancer can survive and spread to other locations. If the patient’s dose is too high, they can be harmed by toxic side effects from the medicine.”

One in six cancer medications tested was found to contain the incorrect quantity of API, with tested medications having APIs ranging from 28 to 120%. The study evaluated 251 samples of cancer medications collected from major hospitals and private markets in all four countries.

The study, funded by the National Cancer Institute of the National Institutes of Health, is among the first to evaluate cancer drug quality in sub-Saharan Africa. Currently, sub-Saharan Africa has no pharmaceutical regulatory laboratories carrying out chemical analyses for cancer drugs according to the standards required for regulatory purposes.

Yet, the need for cancer drugs is growing.

“We found bad-quality cancer medications in all of the countries, in all of the hospital pharmacies and in the private markets,” said Lieberman, an affiliate of Notre Dame’s Eck Institute for Global Health and Harper Cancer Research Institute. “We learned that visual inspection, which is the main method for detecting bad-quality cancer drugs in sub-Saharan Africa today, only found one in 10 of the bad products.”

In their study, the researchers explained how a combination of high demand for cancer medications, lack of regulatory capacity, and poor manufacturing, distribution and storage practices likely created a problematic environment throughout sub-Saharan Africa. They also argue that given these factors and the global supply chain for pharmaceuticals, substandard cancer medications are likely present in other low and middle-income countries as well.

Lieberman and her team identified several strategies that could help the global community address poor-quality cancer medications:

  • Provide inexpensive technologies at the point of care to screen for bad-quality cancer medicines and create policies for how to respond to products that fail screening tests.
  • Help regulatory agencies in low and middle-income countries get safety equipment and training so they can analyze the quality of cancer medicines in their markets, conduct root-cause investigations when products fail testing, take quick regulatory actions enabled by lab data and share data about bad-quality products.
  • Perform cost-benefit analyses of interventions that tackle common problems (such as medications being out of stock, unsafe shipping, storage or dispensing practices, and lack of availability or affordability of medications) to help policymakers and funders get the most impact on patient outcomes from their available resources.
  • Work with care providers to develop site-specific response policies and messaging for patients and engage regulators, donors and other resources.

Lieberman and her lab are developing a user-friendly technology called the chemoPAD for screening cancer medications. This low-cost paper device could potentially help hospitals, pharmacies and health care professionals in low and middle-income countries monitor drug quality without restricting a patient’s access to the medication.

“This is all part of a bigger project aimed at developing the ChemoPAD as a point-of-care testing device that we can use, something that’s more accurate in detecting poor-quality products than just visual inspection,” Lieberman said.

“There are lots of medicines where the regulators don’t have enough resources to verify the quality, and some manufacturers take advantage of that to cut corners. There are also problems with distribution systems, so even if a product is good quality when it leaves the manufacturer, it may be degraded during shipping or storage. These products flow into low and middle-income countries, and they get used on patients. I want to change that.”

Source: University of Notre Dame

Zapping Glioblastoma With Electric Fields Slows Tumour Growth

Source: Pixabay

A new study led by Keck Medicine of USC researchers may have uncovered an effective combination therapy for glioblastoma, a brain tumour diagnosis with few available effective treatments. According to the National Brain Tumor Society, the average survival for patients diagnosed with glioblastoma is eight months.

The study, which was published in the journal Med, finds that using Tumour Treating Fields therapy (TTFields), which delivers targeted waves of electric fields directly into tumours to stop their growth and signal the body’s immune system to attack cancerous tumour cells, may extend survival among patients with glioblastoma, when combined with immunotherapy (pembrolizumab) and chemotherapy (temozolomide).

TTFields disrupt tumour growth using low-intensity, alternating electric fields that push and pull key structures inside tumour cells in continually shifting directions, making it difficult for the cells to multiply. Preventing tumour growth gives patients a better chance of successfully fighting the cancer. When used to treat glioblastoma, TTFields are delivered through a set of mesh electrodes that are strategically positioned on the scalp, generating fields at a precise frequency and intensity focused on the tumour. Patients wear the electrodes for approximately 18 hours a day.

Researchers observed that TTFields attract more tumour-fighting T cells, which are white blood cells that identify and attack cancer cells, into and around the glioblastoma. When followed by immunotherapy, these T cells stay active longer and are replaced by even stronger, more effective tumour-fighting T cells.

“By using TTFields with immunotherapy, we prime the body to mount an attack on the cancer, which enables the immunotherapy to have a meaningful effect in ways that it could not before,” said David Tran, MD, PhD, chief of neuro-oncology with Keck Medicine, co-director of the USC Brain Tumor Center and corresponding author of the study. “Our findings suggest that TTFields may be the key to unlocking the value of immunotherapy in treating glioblastoma.”

TTFields are often combined with chemotherapy in cancer treatment. However, even with aggressive treatment, the prognosis for glioblastoma remains poor. Immunotherapy, while successful in many other cancer types, has also not proved effective for glioblastoma when used on its own.

However, in this study, adding immunotherapy to TTFields and chemotherapy was associated with a 70% increase in overall survival. Notably, patients with larger, unresected (not surgically removed) tumours showed an even stronger immune response to TTFields and lived even longer. This suggests that, when it comes to kick-starting the body’s immune response against the cancer, having a larger tumour may provide more targets for the therapy to work against.

Using alternating electric fields to unlock immunotherapy

Pembrolizumab, the immunotherapy used in this study, is an immune checkpoint inhibitor (ICI), which enhances the body’s natural ability to fight cancers by improving T cells’ ability to identify and attack cancer cells.

However, there are typically few T cells in and around glioblastomas because these tumours originate in the brain and are shielded from the body’s natural immune response by the blood-brain barrier. This barrier safeguards the brain by tightly regulating which cells and substances enter from the bloodstream. Sometimes, this barrier even blocks T cells and other therapies that could help kill brain tumours.

This immunosuppressive environment inside and around the glioblastoma is what makes common cancer therapies like pembrolizumab and chemotherapy significantly less effective in treating it. Tran theorised the best way to get around this issue was to start an immune reaction directly inside the tumour itself, an approach known as in situ immunisation, using TTFields.

This study demonstrates that combining TTFields with immunotherapy triggers a potent immune response within the tumour – one that ICIs can then amplify to bolster the body’s own defence against cancer.

“Think of it like a team sport – immunotherapy sends players in to attack the tumour (the offence), while TTFields weaken the tumour’s ability to fight back (the defence). And just like in team sports, the best defence is a good offence,” said Tran, who is also a member of the USC Norris Comprehensive Cancer Center.

Study methodology and results

The study analysed data from 2-THE-TOP, a Phase 2 clinical trial, which enrolled 31 newly diagnosed glioblastoma patients who had completed chemoradiation therapy. Of those, 26 received TTFields combined with both chemotherapy and immunotherapy. Seven of these 26 patients had inoperable tumours due to their locations – an especially high-risk subgroup with the worst prognosis and few treatment options.

Patients in the trial were given six to 12 monthly treatments of chemotherapy alongside TTFields for up to 24 months. The number and duration of treatments were determined by patients’ response to treatment. The immunotherapy was given every three weeks, starting with the second dose of chemotherapy, for up to 24 months.

Patients who used the device alongside chemotherapy and immunotherapy lived approximately 10 months longer than patients who had used the device with chemotherapy alone in the past. Moreover, those with large, inoperable tumours lived approximately 13 months longer and showed much stronger immune activation compared to patients who underwent surgical removal of their tumours.

“Further studies are needed to determine the optimal role of surgery in this setting, but these findings may offer hope, particularly for glioblastoma patients who do not have surgery as an option,” said Tran.

The researchers are now moving ahead to a Phase 3 trial.

Source: University of Southern California – Health Sciences

Do Bevacizumab’s Ovarian Cancer Clinical Trial Results Hold up in the Real World?

Photo by Tima Miroshnichenko on Pexels

A real-world study based on information from an electronic health records–derived database reveals limited benefits of adding bevacizumab to first-line chemotherapy for patients with ovarian cancer, consistent with previous clinical trials. The findings are published by Wiley online in CANCER, a peer-reviewed journal of the American Cancer Society.

Bevacizumab is a monoclonal antibody against vascular endothelial growth factor A that acts to inhibit malignant cell growth and blood vessel formation. It’s approved as a treatment for various types of cancer. In clinical trials of patients with ovarian cancer, adding bevacizumab to first-line chemotherapy did not prolong overall survival compared with chemotherapy alone, but this treatment strategy did improve overall survival in analyses limited to patients with high-risk prognostic factors—such as those with advanced disease and those who had residual cancer present after surgery. A final long-term analysis did not find an overall survival benefit associated with bevacizumab in the full patient cohort.

To investigate whether these findings also hold true in real-world clinical practice, researchers examined the electronic health records of 1,752 patients with stage III or IV ovarian cancer who initiated chemotherapy with or without bevacizumab in 2017–2023 and were followed for a median time of 1.5 years.

Among patients with high-risk prognostic factors, the median time to next treatment was significantly longer for those receiving chemotherapy plus bevacizumab compared with those receiving chemotherapy alone: 13.6 versus 11.7 months. (Time to next treatment is used to assess the duration of clinical benefit by measuring the time between initiating a treatment and starting the next line of therapy). In these patients, there was also a trend towards longer median overall survival for the combination therapy: 31.1 versus 27.4 months. Among patients without high-risk prognostic factors, outcomes did not differ with the addition of bevacizumab. Benefits therefore seemed limited to special subpopulations, mirroring the findings from clinical trials.

“Our results were similar to results from clinical trials,” said lead author Linda R. Duska, MD, MPH, of the University of Virginia School of Medicine. “Our findings suggest that clinicians should consider a patient’s risk factors before using bevacizumab with first-line chemotherapy in the treatment of advanced ovarian cancer.”  

Source: Wiley

Scientific Breakthrough: Price of Costly Cancer Drug can be Halved

Source: Unsplash CC0

Taxol is one of the most commonly prescribed chemotherapy drugs for breast, ovarian, cervical, and lung cancer. Yet producing the drug is complex, costly, and environmentally burdensome, as it currently relies on a complicated chemical semi-synthesis. For 30 years, scientists around the world have tried to understand how taxol, a natural compound derived from the Pacific yew tree, forms in nature. Decoding this process would allow for biotech-based production. But the final steps remained unknown – until now.

A research team from the University of Copenhagen has succeeded in finding the two missing pieces: They have identified the enzymes responsible for the two critical final steps in the biosynthetic pathway that makes Taxol active as a drug.

“Taxol has been the Holy Grail in this research field for decades because it’s an exceptionally complex molecule. But with the discovery of the final two enzymes, we now fully understand how it’s formed. This has allowed us to develop a biotechnological method to produce taxol in yeast cells,” says Sotirios Kampranis, Professor at the Department of Plant and Environmental Sciences and senior author of the study published in Nature Synthesis.

The method involves cloning the taxol-producing genes from the yew tree and inserting them into yeast cells. These engineered yeast cells then become host organisms or micro-factories with the full recipe to produce taxol.

Affecting women in developing countries

The research team from the University of Copenhagen has applied for patenting the method and is in the process of launching a spin-out company to manufacture biosynthetic Taxol. 

“Using this method, we can produce Taxol cheaper than current conventional methods. Looking ahead, once we refine the process further, we expect to be able to reduce the cost by half,” says Assistant Professor and first author Feiyan Liang.

Lower prices are especially crucial as ovarian cancer is on the rise globally. The prevalence of the disease is expected to increase by over 55% by 2050, with the vast majority of cases in low and middle-income countries. The number of women dying from ovarian cancer is projected to rise by nearly 70% in the same period.

Currently, taxol costs more than USD20 000 per kilogram, making it one of the most expensive active pharmaceutical ingredients in use.

“We see increasing demand for Taxol in many developing countries, where the high price is a major barrier. We hope our work will contribute to lower-priced drugs so that more people can have access to cancer treatment,” Feiyan Liang says.

Much more sustainable

The new method is not only more cost-effective but also more sustainable than chemical synthesis. One advantage is that the procedure does not involve harmful chemicals and solvents common in chemical production. Another advantage is that it allows the use of more crude, less purified extracts from yew needles as starting material – much cheaper than the ultra-pure inputs required in chemical semi-synthesis. On top of that, the materials can be recycled.

“We want to show that it’s possible to build a biotechnological drug production that is both sustainable and low-cost. There are very few examples of that today, but we now have the foundation to make it happen,” says Sotirios Kampranis. 

TWO TREES PER TREATMENT

  • Taxol was originally extracted from the inside bark of the Pacific yew tree (Taxus brevifolia), but as the taxol content in the bark is very low, harvesting it meant removing all the bark and as a result of this killing the tree.
  • Yew trees take 70 to 100 years to mature. Producing just one treatment required about two trees, making this method highly unsustainable. It was abandoned years ago, though wild yew trees are still under pressure in some regions.
  • Today’s most common method involves harvesting a similar compound from yew needles for chemical synthesis, but the cost of this process is still high, which is why the average price of taxol exceeds USD 20 000 per kilogram (source: pharmacompass.com).

Source: University of Copenhagen – Faculty of Science

Scientists Upend the Current Understanding of How PARP Inhibitors Kill Cancer

Breast cancer cells. Image by National Cancer Institute

Research by UMass Chan Medical School scientists poses a new explanation for how PARP inhibitor drugs attack and destroy BRCA1 and BRCA2 tumour cells. Published in Nature Cancer, this study illustrates how a small DNA nick – a break in one strand of the DNA – can expand into a large single-stranded DNA gap, killing BRCA mutant cancer cells, including drug-resistant breast cancer cells. These findings identify a novel vulnerability that may be a potential target for new therapeutics. 

Mutations in BRCA1 and BRCA2, tumour suppressor genes that play a crucial role in DNA repair, substantially increase the likelihood of cancer. These cancers are, however, quite sensitive to anticancer drugs such as poly (ADP-ribose) polymerase inhibitors (PARPi). When successful, these cancer treatments cause enough DNA damage to trigger cancer cell death. However, the array of different damages potentially induced by these drugs makes it difficult to pinpoint the exact cause of cell death. Additionally, PARPi resistance does occur, complicating treatment and leading to recurrent cancer.

“The conventional thinking has been that single-stranded DNA breaks from PARPi ultimately generated DNA double-strand breaks, and that was what was killing the BRCA mutant cancer cells,” said Sharon Cantor, PhD, professor of molecular, cell and cancer biology. “Yet, there wasn’t much in the literature that experimentally confirmed this belief. We decided to go back to the beginning and use genome engineering tools to see how these cells dealt with single-strand nicks to their DNA.” 

Using CRISPR technology, Cantor and Jenna M. Whalen, PhD, a postdoctoral researcher in the Cantor lab, introduced small, single strand breaks into several breast cancer cell lines, such as those with the BRCA1 and BRCA2 mutation, as well BRCA-proficient cells. They found that cells with BRCA1 or BRCA2 deficiency were uniquely sensitive to nicks. They also found that breast cancer cells that lose components of the complex that protects DNA from unnecessary DNA end cuts become resistant to chemotherapy drugs such as PARP inhibitors. However, restoring double strand DNA repair functions in breast cancer cells did not save the cells from dying, thus demonstrating that these repair functions are not critical for breast cancer cell survival. Instead, the cells become even more sensitive to single strand nicks, which then accumulate and form large gaps.  

“Our findings reveal that it is the resection of a nick into a single-stranded DNA gap that drives this cellular lethality,” said Whalen. “This highlights a distinct mechanism of cytotoxicity, where excessive resection, rather than failed DNA repair by homologous recombination, underpins the vulnerability of BRCA-deficient cells to nick-induced damage.” 

The findings suggest that PARPi may also work by generating nicks in BRCA1 and BRCA2 cancer cells, exploiting their inability to effectively process these lesions. For cancers that have developed PARPi-resistance, nick-inducing therapies provide a promising mechanism to bypass resistance and selectively target resection-dependent vulnerabilities.  

“Importantly, our findings suggest a path forward for treating PARPi-resistant cells that regained homologous recombination repair: to kill these cells, nicks could be induced such as through ionizing radiation,” said Cantor. “By targeting nicks in this way, therapies could effectively exploit the persistent vulnerabilities of these resistant cancer cells.”

Source: UMass Chan Medical School

An Inhalable Chemotherapy for Lung Cancer – Inspired by Mussels

Photo by Mockup Graphics on Unsplash

Researchers from POSTECH and Kyungpook National University have developed a novel inhalable therapeutic delivery system for lung cancer, making use of mucoadhesive protein nanoparticles inspired the adhesive properties of marine mussels.

Non-small cell lung cancer (NSCLC), which accounts for 85% of all lung cancer cases and treatment is particularly challenging due to difficulties in early detection. Current anticancer treatments are predominantly administered intravenously, impacting both malignant and healthy tissues, often leading to severe adverse effects. As a result, inhalable therapeutics have emerged as a promising alternative, enabling localised drug delivery directly to the lungs. A major obstacle to this approach is the lung’s mucosal barriers and immune cells. Building on this context, collaborative research has culminated in the development of a mucoadhesive protein nanoparticle designed for lung cancer treatment.

This approach leverages the remarkable adhesive properties of marine mussel proteins, renowned for their underwater adhesion. Drawing inspiration from the oxidation-reduction mechanisms of foot protein type 6 (fp-6), the researchers engineered foot protein type 1 (fp-1) by integrating cysteine, creating a biomaterial with enhanced adhesive strength and precise drug delivery capabilities within the lung cancer microenvironment. These nanoparticles exhibit exceptional therapeutic efficacy by enabling selective payload release while effectively inhibiting release in healthy tissues to minimise adverse effects. Moreover, the intrinsic biocompatibility, biodegradability, and immunocompatibility of marine mussel proteins ensure superior biological safety and substantially prolong the retention of anticancer drugs, thereby amplifying their therapeutic impact.

In animal models of lung cancer, the nanoparticles developed by the research team and their contained anti-cancer drugs showed effectiveness in inhibiting cancer cell metastasis and invasion after being delivered to the lungs through a nebuliser and adhering to the mucosa for extended periods. This advancement holds the potential to enhance patient access to lung cancer treatment, as the simplified inhalation-based drug administration could be self-managed at home. Furthermore, this approach may significantly improve patients’ quality of life by reducing the need for hospital visits.

Professor Hyung Joon Cha, who spearheaded the collaborative research at POSTECH, stated, “The findings from our study have the potential to substantially enhance both the precision and efficacy of lung cancer treatments, while significantly improving patients’ quality of life.”

Source: Pohang University of Science & Technology (POSTECH)

Magnetic Fields Boost Doxorubicin Uptake in Breast Cancer Treatment

Colourised scanning electron micrograph of a breast cancer cell. Credit: NIH

Researchers at the National University of Singapore (NUS) have developed a non-invasive method to improve the effectiveness of chemotherapy while reducing its harmful side effects.

By applying brief, localised pulses of magnetic fields, the team demonstrated a significant increase in the uptake of doxorubicin (DOX), a widely used chemotherapy drug, into breast cancer cells, with minimal impact on healthy tissues. This selective uptake enables more precise targeting of cancer cells, potentially improving treatment outcomes and reducing the adverse effects often associated with chemotherapy.

The study, led by Associate Professor Alfredo Franco-Obregón at NUS, is the first to systematically show how pulsed magnetic fields enhance DOX uptake in cancer cells. The team also showed that this approach could suppress tumours at lower drug doses.

The team’s research was published in the journal Cancers. It builds on earlier work from 2022, which first revealed that certain cancer cells are more vulnerable to magnetic field therapy.

Better chemotherapy outcomes and fewer side effects

DOX is a commonly used chemotherapy drug for breast cancer. It works by binding to DNA components and disrupting cell replication and respiration, which then kills off cancer cells. Despite its efficacy, it is a non-selective drug, which means it can also damage healthy tissues, leading to side effects ranging from mild to severe, including cardiomyopathy and muscle atrophy.

To address these challenges, the NUS researchers developed a novel approach that uses brief pulses of magnetic fields to selectively increase DOX uptake into breast cancer cells. Their study revealed the role of a calcium ion channel known as TRPC1, which is often found in aggressive cancers, including breast cancer. Magnetic field exposure activates TRPC1, enhancing its ability to facilitate the entry of DOX into cancer cells.

The researchers conducted experiments comparing the effects of the magnetic field therapy on human breast cancer cells and healthy muscle cells. They found that breast cancer cells took in significantly more DOX when exposed to magnetic pulses, while normal tissues were not targeted as much. A 10-minute magnetic field exposure reduced the drug concentration needed for similar amount of cancer killing by half, particularly at low doses of the drug.

In contrast, healthy muscle cells did not show an increase in cell death in response to the combination of DOX and magnetic pulses indicating greater protection for non-cancerous tissues.

The team also demonstrated that reducing TRPC1 expression or blocking its activity eliminated this effect, which confirms the crucial role of TRPC1 channels in the process. “Importantly, when we increased the amount of TRPC1, we observed an increase in DOX uptake – this means that TRPC1 can be used as a viable therapeutic target for aggressive cancers,” said first author Mr Viresh Krishnan Sukumar, PhD candidate at NUS Centre for Cancer Research (N2CR).

“What’s promising is that this mechanism works strongest at low drug concentrations, enabling us to target cancer cells more effectively while reducing the burden of chemotherapy on healthy tissues,” Assoc Prof Franco-Obregón added.

With breast cancer remaining the leading cause of cancer-related deaths among women worldwide, the need for novel treatment strategies is urgent. “The majority of women who undergo chemotherapy experience side effects from treatment, and in some cases, doses of chemotherapy need to be reduced, or in severe cases, stopped prematurely,” said Assistant Professor Joline Lim, Principal Investigator at N2CR and Senior Consultant, Department of Haematology-Oncology, National University Cancer Institute, Singapore. “Moreover, prolonged exposure to high-dose chemotherapy can also lead to drug resistance. This targeted approach represents an excellent opportunity to potentially improve treatment outcomes while preserving patients’ quality of life.”

Advancing the frontier of precision oncology

The team’s magnetic-assisted approach addresses one of the biggest challenges of chemotherapy, namely its toxic effects on healthy tissues. By selectively enhancing drug uptake into cancer cells, this method has the potential to drastically reduce the systemic side effects often experienced by breast cancer patients. This not only improves treatment outcomes and quality of life, but also encourages earlier treatment for those hesitant about treatment side effects. The study also underscores the role of biomarkers, such as elevated TRPC1 expression, in transforming cancer care by enabling precision-driven treatment options.

Future work will focus on translating these findings into clinical practice by localising magnetic field exposure specifically to tumours in patients. This would further validate the potential to reduce systemic DOX doses while maximising localised drug delivery in cancer cells.

“Our approach will be patented and form the foundation for a startup specialising in breast cancer treatment. We are currently in discussions with potential investors in Southeast Asia and the United States to translate this technology from bench to bedside,” shared Assoc Prof Franco-Obregón. National University Cancer Institute, Singapore. “Moreover, prolonged exposure to high-dose chemotherapy can also lead to drug resistance. This targeted approach represents an excellent opportunity to potentially improve treatment outcomes while preserving patients’ quality of life.”

Source: National University of Singapore

Gold Trumps Platinum for Chemotherapy Compounds

Left: Normal cervical cancer cells with well-formed nuclei in blue and elongated actin filaments – which play an essential role in cell survival and division – in green. Right: Destabilised cervical cancer cells after gold compound treatment show structural integrity compromised while the nuclei in blue are breaking apart, indicating cell death. Credit: RMIT University

Gold-based drugs can slow tumour growth in animals by 82% and target cancers more selectively than standard chemotherapy drugs, according to new research out of RMIT University. The study published in the European Journal of Medicinal Chemistry reveals a new gold-based compound that’s 27 times more potent against cervical cancer cells in the lab than standard chemotherapy drug cisplatin. 

It was also 3.5 times more effective against prostate cancer and 7.5 times more effective against fibrosarcoma cells in the lab. In mice studies, the gold compound reduced cervical cancer tumour growth by 82%, compared to cisplatin’s 29%. 

Project lead at RMIT, Distinguished Professor Suresh Bhargava AM, said it marked a promising step towards alternatives to platinum-based cancer drugs.  

“These newly synthesised compounds demonstrate remarkable anticancer potential, outperforming current treatments in a number of significant aspects including their selectivity in targeting cancer cells,” said Bhargava, Director of RMIT’s Centre for Advanced Materials and Industrial Chemistry. “While human trials are still a way off, we are really encouraged by these results.” 

The gold-based compound is patented and ready for further development towards potential clinical application.

Gold: the noblest element

Photo by Jingming Pan on Unsplash

Gold is famously known as the noblest of all metals because it has little or no reaction when encountering other substances. However, the gold compound used in this study is a chemically tailored form known as Gold(I), designed to be highly reactive and biologically active.  

This chemically reactive form was then tailored to interact with an enzyme abundant in cancer cells, known as thioredoxin reductase.

By blocking this protein’s activity, the gold compound effectively shuts down cancer cells before they can multiply or develop drug resistance. 

Project co-lead at RMIT, Distinguished Professor Magdalena Plebanski, said along with this ability to block protein activity, the compound also had another weapon in its anti-cancer arsenal. 

In zebrafish studies, it was shown to stop the formation of new blood vessels that tumours need in order to grow. 

This was the first time one of the team’s various gold compounds had shown this effect, known as anti-angiogenesis.  

The drug’s effectiveness at using these two attacks simultaneously was demonstrated against a range of cancer cells. 

This included ovarian cancer cells, which are known to develop resistance to cisplatin treatment in many cases. 

“Drug resistance is a significant challenge in cancer therapy,” said Plebanski, who heads RMIT’s Cancer, Ageing, and Vaccines Laboratory.

“Seeing our gold compound have such strong efficacy against tough-to-treat ovarian cancer cells is an important step toward addressing recurrent cancers and metastases.” 

Gold has been a cornerstone of Indian Ayurvedic treatments for centuries, celebrated for its healing properties. Today, gold-based cancer treatments are gaining global traction, with advancements such as the repurposing of the anti-arthritic drug auranofin, now showing promise in clinical trials for oncology. 

“We know that gold is readily accepted by the human body, and we know it has been used for thousands of years in treating various conditions,” Bhargava said.

“Essentially, gold has been market tested, but not scientifically validated. 

“Our work is helping both provide the evidence base that’s missing, as well as delivering new families of molecules that are tailor-made to amplify the natural healing properties of gold,” he said.

Bhargava said this highly targeted approach minimises the toxic side effects seen with the platinum-based cisplatin, which targets DNA and damages both healthy and cancerous cells.

“Their selectivity in targeting cancer cells, combined with reduced systemic toxicity, points to a future where treatments are more effective and far less harmful,” Bhargava said. 

This specific form of gold was also shown to be more stable than those used in earlier studies, allowing the compound to remain intact while reaching the tumour site.