Tag: cognitive ability

Adolescents Who Sleep Longer Perform Better at Cognitive Tasks

Photo by Eren Li

Adolescents who sleep for longer – and from an earlier bedtime – than their peers tend to have improved brain function and perform better at cognitive tests, researchers from the UK and China have shown.

But the study of adolescents in the US also showed that even those with better sleeping habits were not reaching the amount of sleep recommended for their age group.

Sleep plays an important role in helping our bodies function. It is thought that while we are asleep, toxins that have built up in our brains are cleared out, and brain connections are consolidated and pruned, enhancing memory, learning, and problem-solving skills. Sleep has also been shown to boost our immune systems and improve our mental health.

During adolescence, our sleep patterns change. We tend to start going to bed later and sleeping less, which affects our body clocks. All of this coincides with a period of important development in our brain function and cognitive development. The American Academy of Sleep Medicine says that the ideal amount of sleep during this period is between eight- and 10-hours’ sleep.

Professor Barbara Sahakian from the Department of Psychiatry at the University of Cambridge said: “Regularly getting a good night’s sleep is important in helping us function properly, but while we know a lot about sleep in adulthood and later life, we know surprisingly little about sleep in adolescence, even though this is a crucial time in our development. How long do young people sleep for, for example, and what impact does this have on their brain function and cognitive performance?”

Studies looking at how much sleep adolescents get usually rely on self-reporting, which can be inaccurate. To get around this, a team led by researchers at Fudan University, Shanghai, and the University of Cambridge turned to data from the Adolescent Brain Cognitive Development (ABCD) Study, the largest long-term study of brain development and child health in the United States.

As part of the ABCD Study, more than 3200 adolescents aged 11-12 years old had been given FitBits, allowing the researchers to look at objective data on their sleep patterns and to compare it against brain scans and results from cognitive tests. The team double-checked their results against two additional groups of 13-14 years old, totalling around 1190 participants. The results are published today in Cell Reports.

The team found that the adolescents could be divided broadly into one of three groups:

Group One, accounting for around 39% of participants, slept an average (mean) of 7 hours 10 mins. They tended to go to bed and fall asleep the latest and wake up the earliest.

Group Two, accounting for 24% of participants, slept an average of 7 hours 21 mins. They had average levels across all sleep characteristics.

Group Three, accounting for 37% of participants, slept an average of 7 hours 25 mins. They tended to go to bed and fall asleep the earliest and had lower heart rates during sleep.

Although the researchers found no significant differences in school achievement between the groups, when it came to cognitive tests looking at aspects such as vocabulary, reading, problem solving and focus, Group Three performed better than Group Two, which in turn performed better than Group One.

Group Three also had the largest brain volume and best brain functions, with Group One the smallest volume and poorest brain functions.

Professor Sahakian said: “Even though the differences in the amount of sleep that each group got was relatively small, at just over a quarter-of-an-hour between the best and worst sleepers, we could still see differences in brain structure and activity and in how well they did at tasks. This drives home to us just how important it is to have a good night’s sleep at this important time in life.”

First author Dr Qing Ma from Fudan University said: “Although our study can’t answer conclusively whether young people have better brain function and perform better at tests because they sleep better, there are a number of studies that would support this idea. For example, research has shown the benefits of sleep on memory, especially on memory consolidation, which is important for learning.”

The researchers also assessed the participants’ heart rates, finding that Group Three had the lowest heart rates across the sleep states and Group One the highest. Lower heart rates are usually a sign of better health, whereas higher rates often accompany poor sleep quality like restless sleep, frequent awakenings and excessive daytime sleepiness.

Because the ABCD Study is a longitudinal study – that is, one that follows its participants over time – the team was able to show that the differences in sleep patterns, brain structure and function, and cognitive performance, tended be present two years before and two years after the snapshot that they looked at.

Senior author Dr Wei Cheng from Fudan University added: “Given the importance of sleep, we now need to look at why some children go to bed later and sleep less than others. Is it because of playing videogames or smartphones, for example, or is it just that their body clocks do not tell them it’s time to sleep until later?”

The research was supported by the National Key R&D Program of China, National Natural Science Foundation of China, National Postdoctoral Foundation of China and Shanghai Postdoctoral Excellence Program. The ABCD Study is supported by the National Institutes of Health.

Reference

Ma, Q et al. Neural correlates of device-based sleep characteristics in adolescents. Cell Reports; 22 Apr 2025; DOI: 10.1016/j.celrep.2025.115565



Republished under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Read the original article.

Any Form of Exercise can Significantly Boost Brain Function

Research findings are good news for couch potatoes

Photo by RDNE Stock project

Whether it’s an early morning jog, or a touch of Tai Chi, groundbreaking research from the University of South Australia shows that any form of exercise can significantly boost brain function and memory across children, adults, and older adults.

In the largest, most comprehensive umbrella review to date, researchers found that regular exercise improves general cognition, memory, and executive function in both healthy individuals and those with clinical conditions, reinforcing exercise as an essential, inclusive activity for optimising cognitive health. The review appears in the British Journal of Sports Medicine.

Synthesising findings from 133 systematic reviews, covering 2724 randomised controlled trials and 258 279 participants, the systematic umbrella and meta-meta-analysis found that:

  • low- to moderate-intensity exercise had the greatest benefits for brain function and memory
  • children and adolescents showed the greatest improvements in memory, while people with ADHD saw the biggest gains in executive function
  • yoga, Tai Chi, and exergames (active video games) delivered the most significant cognitive benefits.

Lead researcher, UniSA’s Dr Ben Singh, says the findings provide a comprehensive understanding of how different types, intensities, and durations of exercise influence cognitive function.

“Exercise has a profound effect on physical health, but we also know it benefits brain function. What this study confirms is that even low-intensity exercise – like yoga or walking – can improve cognition, making it accessible to people of all ages and abilities,” Dr Singh says.

“In particular, we found that benefits were delivered quickly – with clear gains within 1-3 months, highlighting that even small bursts of activity can make a big difference. It also signals that trying out new activities could play a key role in keeping the brain engaged and active.

“For children and teens, exercise was especially beneficial for developing memory, while for people with ADHD, it helped improve focus, reduce impulsivity, and enhance executive function.

“We also found that mind-body exercises, like Tai Chi and yoga, had the most significant impact on memory, while exergames – such as Pokémon Go – were highly effective for general cognition. This is an encouraging finding, as it suggests that engaging, low-impact activities can offer real cognitive benefits.”

Senior researcher, Professor Carol Maher says exercise should be encouraged as a cognitive health strategy across all ages and fitness levels.

Cognitive decline and neurodegenerative diseases are growing global health concerns, underscoring the urgent need to identify effective strategies to preserve and enhance cognitive function across the lifespan,” Prof Maher says.

“This study presents compelling evidence that exercise should be integrated into healthcare and education settings to promote cognitive well-being.

“Knowing that even small amounts of exercise can improve memory and brain function – especially for those at higher risk – presents a clear opportunity for exercise to be included in clinical and public health guidelines.”

Source: University of South Australia

New Insights into Sleep Uncover Mechanism for Enhancing Cognitive Function

Photo by Cottonbro on Pexels

While it’s well known that sleep enhances cognitive performance, the underlying neural mechanisms, particularly those related to nonrapid eye movement (NREM) sleep, remain largely unexplored. A new study by a team of researchers coordinated by Rice University’s Valentin Dragoi, has nonetheless uncovered a key mechanism by which sleep enhances neuronal and behavioural performance, potentially changing our fundamental understanding of how sleep boosts brainpower.

The research, published in Science, reveals how NREM sleep – such as in a nap – fosters brain synchronisation and enhances information encoding, shedding new light on this sleep stage. The researchers replicated these effects through invasive stimulation, suggesting promising possibilities for future neuromodulation therapies in humans. The implications of this discovery potentially pave the way for innovative treatments for sleep disorders and even methods to enhance cognitive and behavioural performance.

The investigation involved an examination of the neural activity in multiple brain areas in macaques while the animals performed a visual discrimination task before and after a 30-minute period of NREM sleep. Using multielectrode arrays, the researchers recorded the activity of thousands of neurons across three brain areas: the primary and midlevel visual cortices and the dorsolateral prefrontal cortex, which are associated with visual processing and executive functions. To confirm that the macaques were in NREM sleep, researchers used polysomnography to monitor their brain and muscle activity alongside video analysis to ensure their eyes were closed and their bodies relaxed.

The findings demonstrated that sleep improved the animals’ performance in the visual task with enhanced accuracy in distinguishing rotated images. Meanwhile, the macaques that experienced quiet wakefulness without falling asleep did not show the same performance boost.

“During sleep, we observed an increase in low-frequency delta wave activity and synchronised firing among neurons across different cortical regions,” said first author Dr Natasha Kharas. “After sleep, however, neuronal activity became more desynchronised compared to before sleep, allowing neurons to fire more independently. This shift led to improved accuracy in information processing and performance in the visual tasks.”

The researchers also simulated the neural effects of sleep through low-frequency electrical stimulation of the visual cortex. They applied a 4-Hz stimulation to mimic the delta frequency observed during NREM sleep while the animals were awake. This artificial stimulation reproduced the desynchronization effect seen after sleep and similarly enhanced the animals’ task performance, suggesting that specific patterns of electrical stimulation could potentially be used to emulate the cognitive benefits of sleep.

“This finding is significant because it suggests that some of the restorative and performance-enhancing effects of sleep might be achieved without the need for actual sleep,” said Dragoi, study co-author, professor of electrical and computer engineering at Rice and professor of neuroscience at Weill Cornell. “The ability to reproduce sleeplike neural desynchronisation in an awake state opens new possibilities for enhancing cognitive and perceptual performance in situations where sleep is not feasible – such as for individuals with sleep disorders or in extenuating circumstances such as space exploration.”

The researchers further investigated their findings by building a large neural network model. They found that during sleep, both excitatory and inhibitory connections in the brain become weaker, but they do so asymmetrically, making inhibitory connections weaker than excitatory connections, which causes an increase in excitation.

“We have uncovered a surprising solution that the brain employs after sleep whereby neural populations participating in the task reduce their level of synchrony after sleep despite receiving synchronizing inputs during sleep itself,” Dragoi said.

The idea that NREM sleep effectively “boosts” the brain in this way, and that this resetting can be mimicked artificially, offers potential for developing therapeutic brain stimulation techniques to improve cognitive function and memory.

“Our study not only deepens our mechanistic understanding of sleep’s role in cognitive function but also breaks new ground by showing that specific patterns of brain stimulation could substitute for some benefits of sleep, pointing toward a future where we might boost brain function independently of sleep itself,” Dragoi said.

Source: Rice University

Short-term Menopausal Hormone Therapy has no Long-term Cognitive Impact

Photo by Teona Swift on Unsplash

Women in early postmenopause taking short-term MHT had no cognitive effects a decade later

Short-term menopausal hormone therapy (MHT) did not have long-term cognitive effects when given to women in early postmenopause, according to a study published November 21st in the open-access journal PLOS Medicine by Carey Gleason from the University of Wisconsin-Madison, USA, and colleagues.

While MHT can offer relief from the challenging symptoms of menopause, many women and doctors are hesitant to start MHT due to safety concerns. Previous research has linked one form of hormone therapy to mild cognitive impairment and dementia in women older than 65 years of age, prompting research on the importance of age and timing of therapy on cognitive impairment. Other studies have suggested that transdermal oestrogen may have long-term cognitive benefits.

In the Kronos Early Estrogen Prevention Study (KEEPS), women in early postmenopause with good cardiovascular health were randomised to receive one of two types of MHT (oral or transdermal oestrogen) or placebo. At the end of four years, no cognitive benefit or harm was seen in those who received MHT compared to the placebo group. However, long-term cognitive effects of MHT are still understudied.

In this new follow-up study – the KEEPS Continuation Study – researchers revisited participants nearly ten years later to repeat a series of cognitive tests. Among 275 women, although MTH failed to protect against cognitive decline, short-term MHT also had no long-term negative cognitive impact.

These findings may offer reassurance to women considering MHT while adding to the growing body of research supporting the importance of timing for MHT. More research is needed to investigate whether these results are generalisable to women with higher cardiovascular risk.

The authors add, “For women in menopause and the health care providers caring for them, getting direct, clear and evidence-based information about menopausal hormone therapy is challenging. And they need data to guide their decisions.”

Provided by PLOS

Workouts – or Disturbed Sleep – Impact Brain Activity Weeks Later

Photo by Ketut Subiyanto on Pexels

In a rare, longitudinal study, researchers from Aalto University and the University of Oulu tracked one person’s brain and behavioural activity for five months using brain scans and data from wearable devices and smartphones. The results appear in PLOS Biology.

“We wanted to go beyond isolated events,” says research leader (and study participant) Ana Triana. “Our behaviour and mental states are constantly shaped by our environment and experiences. Yet, we know little about the response of brain functional connectivity to environmental, physiological, and behavioural changes on different timescales, from days to months.”

The study found that the brain does not respond to daily life in immediate, isolated bursts. Instead, brain activity evolves in response to sleep patterns, physical activity, mood, and respiration rate over many days. This suggests that even a workout or a restless night from last week could still affect the brain – and therefore attention, cognition and memory – well into next week.

The research also revealed a strong link between heart rate variability – a measure of the heart’s adaptability – and brain connectivity, particularly during rest. This suggests that impacts on the body’s relaxation response, like stress management techniques, could shape brain wiring even when not actively concentrating on a task. Physical activity was also found to positively influence the way brain regions interact, potentially impacting memory and cognitive flexibility. Even subtle shifts in mood and heart rate left lasting imprints for up to 15 days.

Study goes beyond a snapshot

The research is unusual in that few brain studies involve detailed monitoring over days and weeks. “The use of wearable technology was crucial,” says Triana. “Brain scans are useful tools, but a snapshot of someone lying still for half an hour can only show so much. Our brains do not work in isolation.”

Triana was herself the subject of the research, monitored as she went about her daily life. Her unique role as both lead author and study participant added complexity, but also brought firsthand insights into how best to maintain research integrity over several months of personalised data collection.  Data from the devices and twice-weekly brain scans were complemented by qualitative data from mood surveys. 

The researchers identified two distinct response patterns: a short-term wave lasting under seven days and a long-term wave up to 15 days. The former reflects rapid adaptations, like how focus is impacted by poor sleep, but it recovers quickly. The long wave suggests more gradual, lasting effects, particularly in areas tied to attention and memory. 

Single-subject studies offer opportunities for improving mental health care 

The researchers hope their innovative approach will inspire future studies that combine brain data with everyday life to help personalise mental health treatment. 

“We must bring data from daily life into the lab to see the full picture of how our habits shape the brain, but surveys can be tiring and inaccurate,” says study co-author, neuroscientist and physician Dr Nick Hayward. “Combining concurrent physiology with repeated brain scans in one person is crucial. Our approach gives context to neuroscience and delivers very fine detail to our understanding of the brain.”

The study is also a proof-of-concept for patient research. Tracking brain changes in real time could help detect neurological disorders early, especially mental health conditions where subtle signs might be missed.

“Linking brain activity with physiological and environmental data could revolutionise personalised healthcare, opening doors for earlier interventions and better outcomes,” says Triana.

Source: Aalto University

Women’s Mental Agility is Better During Their Periods

Photo by Ashley Williams

New research involving female football players has shown that they react more quickly and accurately during their periods, despite them feeling that they perform worse. The study, published in Neuropsychologia, is the first to assess sport-related cognition during the menstrual cycle and is part of a larger research project supported by the FIFA Research Scholarship.

The findings, from University College London, act as a proof-of-principle that specific types of cognition fluctuate throughout the menstrual cycle, which could have implications for injury and other aspects of women’s health.

Previous sports medicine research has shown that women seem to be at greater risk of sport-related injury during the luteal phase, which is the time between ovulation and menstruation. This is possibly related to the significant hormonal changes that occur throughout the menstrual cycle. But precisely how these changes are linked to an increased likelihood of injury are unknown at present.

In this study, researchers at UCL and ISEH collected reaction time and error data from 241 participants who completed a battery of cognitive tests 14 days apart. Participants also completed a mood scale and a symptom questionnaire twice. Period-tracking apps were used to estimate which phase of their cycle the participants were in when they took the tests.

The tests were designed to mimic mental processes that are typical in team sports. In one test, participants were shown smiling or winking faces and asked to press the space bar only when they saw a smiley face, to test inhibition, attention, reaction time and accuracy. In another, they were asked to identify mirror images in a 3D rotation task, which assesses spatial cognition. A task that asked them to click when two moving balls collide on screen measured spatial timing.

Though participants reported feeling worse during menstruation and perceived that this negatively impacted their performance, their reaction times were faster and they made fewer errors. For example, their timing was on average 10 milliseconds (12%) more accurate in the moving balls task, and they pressed the space bar at the wrong time 25% less in the inhibition task.

Participants’ reaction times were slower during the luteal phase, which begins after ovulation and lasts between 12–14 days up to the beginning of menstruation. They were on average 10–20 milliseconds slower compared to being in any other phase, but their error rate was unchanged.

Dr Flaminia Ronca, first author of the study from UCL Division of Surgery and Interventional Science and ISEH, said: “Research suggests that female athletes are more likely to sustain certain types of sports injuries during the luteal phase and the assumption has been that this is due to biomechanical changes as a result of hormonal variation. But I wasn’t convinced that physical changes alone could explain this association.

“Given that progesterone has an inhibitory effect on the cerebral cortex and oestrogen stimulates it, making us react slower or faster, we wondered if injuries could be a result of a change in athletes’ timing of movements throughout the cycle.

“What is surprising is that the participant’s performance was better when they were on their period, which challenges what women, and perhaps society more generally, assume about their abilities at this particular time of the month.

“I hope that this will provide the basis for positive conversations between coaches and athletes about perceptions and performance: how we feel doesn’t always reflect how we perform.”

To put the findings in context, the authors say the fluctuation in timing could be the difference between an injury or not. Previous research has shown that a variation of just 10 milliseconds can mean the difference between a concussion and a lesser injury, for example. In the colliding balls task, participants’ timing was on average 12 milliseconds slower during the luteal phase compared to every other phase, a difference of 16%.

Dr Megan Lowery, an author of the study from UCL Surgery & Interventional Science and ISEH, said: “There’s lots of anecdotal evidence from women that they might feel clumsy just before ovulation, for example, which is supported by our findings here. My hope is that if women understand how their brains and bodies change during the month, it will help them to adapt.

“Though there’s a lot more research needed in this area, these findings are an important first step towards understanding how women’s cognition affects their athletic performance at different points during their cycle, which will hopefully facilitate positive conversations between coaches and athletes around performance and wellbeing.”

Professor Paul Burgess, senior author of the study from UCL’s Institute of Cognitive Neuroscience, said: “This study emerged from listening carefully to female soccer players and their coaches. We created bespoke cognitive tests to try to mimic the demands made upon the brain at the points in the game where they were telling us that injuries and problems of timing occur at certain times of the menstrual cycle.

“As suggested by what the soccer players had told us, the data suggested that women who menstruate – whether they are athletes or not – do tend to vary in their performance at certain stages of the cycle. As a neuroscientist, I am amazed that we don’t already know more about this, and hope that our study will help motivate increasing interest in this vital aspect of sports medicine.”

Source: University College London

Study Reveals ‘Profound’ Link between Dietary Choices and Brain Health

Photo by Fakurian Design on Unsplash

New research published in Nature has shown that a healthy, balanced diet was linked to superior brain health, cognitive function and mental wellbeing. The study, involving researchers at the University of Warwick, sheds light on how food preferences influence more than just physical health, and also significantly impact brain health.

With the help of machine learning, the researchers analysed a large sample of 181 990 participants from the UK Biobank, comparing their dietary choices against a range of physical evaluations, including cognitive function, blood metabolic biomarkers, brain imaging, and genetics.

The food preferences of each participant were collected via an online questionnaire, which the team categorised into 10 groups (eg, alcohol, fruits and meats).

A balanced diet was associated with better mental health, superior cognitive functions and even higher amounts of grey matter in the brain – linked to intelligence – compared with those with a less varied diet.

The study also highlighted the need for gradual dietary modifications, particularly for individuals accustomed to highly palatable but nutritionally deficient foods. By slowly reducing sugar and fat intake over time, individuals may find themselves naturally gravitating towards healthier food choices.

Genetic factors may also contribute to the association between diet and brain health, the scientists believe, showing how a combination of genetic predispositions and lifestyle choices shape wellbeing.

Lead Author Professor Jianfeng Feng, University of Warwick, emphasised the importance of establishing healthy food preferences early in life. He said: “Developing a healthy balanced diet from an early age is crucial for healthy growth. To foster the development of a healthy balanced diet, both families and schools should offer a diverse range of nutritious meals and cultivate an environment that supports their physical and mental health.”

Source: University of Warwick

Liraglutide Boosts Associative Learning in People with Obesity

Photo by Patrick Fore on Unsplash

Obesity leads to altered energy metabolism and reduced insulin sensitivity of cells. The so-called “anti-obesity drugs” such as liraglutide are increasingly used to treat obesity and have caused tremendous interest, especially in the USA. Researchers in Germany have now shown in people with obesity that reduced insulin sensitivity affects learning of sensory associations. The results, published in Nature Metabolism, showed that a single dose of liraglutide was able to normalise these changes and restore the underlying brain circuit function.

The brain must be able to form associations in order to control behaviour. This involves, for example, associating a neutral external stimulus with a consequence following the stimulus. In this way, the brain learns what the implication of handling of the first stimulus are. Associative learning is the basis for forming neural connections and gives stimuli their motivational force. It is essentially controlled by a brain region called the dopaminergic midbrain. This region has many receptors for the body’s signalling molecules, such as insulin, and can thus adapt behaviour to the body’s physiological needs.

But what happens when the body’s insulin sensitivity is reduced due to obesity? Does this change brain activity, ability to learn associations and thus behaviour? Researchers at the Max Planck Institute for Metabolism Research have now measured how well the learning of associations works in participants with normal body weight (high insulin sensitivity, 30 volunteers) and in participants with obesity (reduced insulin sensitivity, 24 volunteers), and if this learning process is influenced by the anti-obesity drug liraglutide.

Low insulin sensitivity reduces the brain’s ability to associate sensory stimuli.

In the evening, they injected the participants with either the drug liraglutide or a placebo in the evening. Liraglutide is a so-called GLP-1 agonist, which activates the GLP-1 receptor in the body, stimulating insulin production and producing a feeling of satiety. It is often used to treat obesity and type 2 diabetes and is given once a day. The next morning, the subjects were given a learning task that allowed the researchers to measure how well associative learning works. They found that the ability to associate sensory stimuli was less pronounced in participants with obesity than in those of normal weight, and that brain activity was reduced in the areas encoding this learning behaviour.

After just one dose of liraglutide, participants with obesity no longer showed these impairments, and no difference in brain activity was seen between participants with normal weight and obesity. In other words, the drug returned the brain activity to the state of normal-weight subjects.

“These findings are of fundamental importance. We show here that basic behaviours such as associative learning depend not only on external environmental conditions but also on the body’s metabolic state. So, whether someone has overweight or not also determines how the brain learns to associate sensory signals and what motivation is generated. The normalisation we achieved with the drug in subjects with obesity, therefore, fits with studies showing that these drugs restore a normal feeling of satiety, causing people to eat less and therefore lose weight,” says study leader Marc Tittgemeyer from the Max Planck Institute for Metabolism Research.

“While it is encouraging that available drugs have a positive effect on brain activity in obesity, it is alarming that changes in brain performance occur even in young people with obesity without other medical conditions. Obesity prevention should play a much greater role in our healthcare system in the future. Lifelong medication is the less preferred option in comparison primary prevention of obesity and associated complications,” says Ruth Hanßen, first author of the study and a physician at the University Hospital of Cologne.

Source: Max Planck Institute for Biology of Ageing

Elective Induced Labour Associated with Lower Grades at Age 12

Photo by Mary Taylor on Pexels

According to a new study published in Acta Obstetricia et Gynecologica Scandinavica, in women with uncomplicated pregnancies, elective induction of labour at any point between 37 and 41 weeks was consistently associated with those children having lower scholasti performance at age 12.

Investigators analysed data for 266 684 children born between 37 and 42 weeks from uncomplicated pregnancies in white women in the Netherlands. Scholastic performance scores at age 12 years were lower in those from pregnancies with induced labour at 37–41 weeks compared with those with uninduced labour. At 42 weeks, there was no significant difference in scholastic performance between these groups.

The proportion of children who reached higher secondary school level was significantly lower after induction of labour at each gestational week from 38–41 weeks. For example, at 38 weeks, rates were 48% versus 54% in induced versus uninduced. (In the Dutch education system, when children reach the end of primary school, around 12 years of age, they are divided over four different levels of secondary education according to their intellectual ability. All children in the last year of regular primary education take a test to guide the choice of level of secondary education.)

“Of course, if there is an indication to induce delivery before 41 weeks, there is little doubt we should do this. But if the reason is purely elective, it is reasonable to be cautious of these subtle adverse effects,” said Wessel Ganzevoort, MD, PhD, senior investigator and maternal foetal medicine specialist at Amsterdam UMC.

Source: Wiley

Greater Cognitive Skills in Children who Play More Video Games

Photo by Igor Karimov on Unsplash

Analysing magnetic resonance imaging (MRI) brain scans of nearly 2000 children, researchers found children who played video games for three or more hours a day did better in cognitive skills tests involving impulse control and working memory compared to children who had never played video games. Published in JAMA Network Open, this study analysed data from the ongoing Adolescent Brain Cognitive Development (ABCD) Study, which is supported by the and other entities of the National Institutes of Health.

“This study adds to our growing understanding of the associations between playing video games and brain development,” said National Institute on Drug Abuse (NIDA) Director Nora Volkow, MD. “Numerous studies have linked video gaming to behaviour and mental health problems. This study suggests that there may also be cognitive benefits associated with this popular pastime, which are worthy of further investigation.”

Although a number of studies have investigated the relationship between video gaming and cognitive behaviour, the neurobiological mechanisms underlying the associations are not well understood. Only a handful of neuroimaging studies have addressed this topic, and the sample sizes for those studies have been small, with fewer than 80 participants.

To address this research gap, scientists at the University of Vermont, Burlington, analysed data obtained when children entered the ABCD Study at ages 9 and 10 years old. The research team examined survey, cognitive, and brain imaging data from nearly 2000 participants from within the bigger study cohort, comparing those who reported playing no video games at all and those who reported playing video games for three hours per day or more. This threshold was selected as it exceeds the American Academy of Paediatrics screen time guidelines, which recommend limiting videogames to one to two hours per day for older children. Researchers assessed their performance in two tasks that reflected the children’s ability to control impulsive behaviour and to memorise information, as well as brain activity while performing the tasks.

The researchers found that the children who reported playing video games for three or more hours per day were faster and more accurate on both cognitive tasks than those who never played. They also observed that the differences in cognitive function observed between the two groups was accompanied by differences in brain activity. Functional MRI brain scans found that children who played video games for three or more hours per day showed higher brain activity in regions of the brain associated with attention and memory than in never-gamers. At the same time, those children who played at least three hours of videogames per day showed more brain activity in frontal brain regions that are associated with more cognitively demanding tasks and less brain activity in brain regions related to vision.  

The researchers think these patterns may stem from practicing tasks related to impulse control and memory while playing videogames, which can be cognitively demanding, and that these changes may lead to improved performance on related tasks. Furthermore, the comparatively low activity in visual areas among children who reported playing video games may reflect that this area of the brain may become more efficient at visual processing as a result of repeated practice through video games.

While prior studies have reported associations between video gaming and increases in depression, violence, and aggressive behaviour, this study did not find that to be the case. The three hours or more group tended to report higher mental health and behavioural issues compared to the non-gaming children, but was not statistically significant. The researchers note that this will be an important measure to continue to track and understand as the children mature.

Further, the researchers stress that this cross-sectional study does not allow for cause-and-effect analyses, and that it could be that children who are good at these types of cognitive tasks may choose to play video games. The authors also emphasise that their findings do not mean that children should spend unlimited time on their computers, mobile phones, or TVs, and that the outcomes likely depend largely on the specific activities children engage in. For instance, they hypothesise that the specific genre of video games, such as action-adventure, puzzle solving, sports, or shooting games, may have different effects for neurocognitive development, and this level of specificity on the type of video game played was not assessed by the study.

“While we cannot say whether playing video games regularly caused superior neurocognitive performance, it is an encouraging finding, and one that we must continue to investigate in these children as they transition into adolescence and young adulthood,” said Bader Chaarani, PhD, assistant professor of psychiatry at the University of Vermont and the lead author on the study. “Many parents today are concerned about the effects of video games on their children’s health and development, and as these games continue to proliferate among young people, it is crucial that we better understand both the positive and negative impact that such games may have.”

Through the ABCD Study, researchers will be able to track these children into young adulthood, looking for gaming-related changes in cognitive skills, brain activity, behaviour, and mental health.

Source: National Institutes of Health