Category: Ageing

Y Chromosome Loss in Immune Cells Creates Opportunity for Cancers

Scanning electron micrograph of a T cell lymphocyte. Credit: NIH / NIAID

A study initiated by a University of Arizona Comprehensive Cancer Center physician-scientist has for the first time defined how loss of the Y chromosome in male immune cells negatively affects immune system function. The findings, published in Nature, may explain why loss of Y is associated with lower cancer survival rates.

In males, each cell in the body usually contains one X and one Y chromosome. “Loss of Y” is a common, nonhereditary genetic change in men in which an immune cell in the blood loses its Y chromosome. It is often associated with aging. Loss of Y has been linked to increased mortality from carcinomas for many years, though no one knew why.

This study is the first to identify and define the relationship between loss of Y in white blood cells, immune cells and tumours, providing insights as to why men with loss of Y have increased cancer risks and poorer outcomes.

“These findings represent a big step forward in our understanding of why men with loss of Y in their blood cells have a higher mortality from cancer. It turns out it’s because these cells make the immune system infiltrating the cancer less effective,” said Dan Theodorescu, MD, PhD, director of the Cancer Center and a professor in the College of Medicine – Tucson

“We hope this provides a solid lead and framework for the nascent Y chromosome field to pursue so we can collectively better understand all the possible biological implications of this finding and how to use them to develop more effective approaches in prevention, treatment resulting in higher survival rates for patients.”

The research team discovered that loss of the Y chromosome – previously identified in malignant epithelial cells by the Theodorescu lab – also occurred in nearby noncancerous tissues, including connective tissue and immune cells.

Most notably, the team found that this chromosomal loss in helper and cytotoxic T cells, which are responsible for attacking cancer cells, was associated with a reduced ability to kill those cancerous cells. The findings suggest a mechanism by which tumours may evade immune detection and suppression.

Finally, the research team found that loss of Y in epithelial cells, combined with loss of Y in T cells, resulted in more aggressive cancers and lower survival rates in patients.

“The study has potential implications for current immunotherapies, including CAR T therapy,” Theodorescu said. “Further research is clearly needed but perhaps immunotherapies using cells from a patient’s immune system could be screened for loss of Y before being used in treatment.”

Source: University of Arizona

Consuming a Variety of Flavonoids Extends Life, New Study Suggests

Photo by Annemarie Grudën on Unsplash

New research has found that those who consume a diverse range of foods rich in flavonoids, such as tea, berries, dark chocolate, and apples, could lower their risk of developing serious health conditions and have the potential to live longer.

The study was led by a team of researchers from Queen’s University Belfast, Edith Cowan University Perth (ECU), and the Medical University of Vienna and Universitat Wien.

The findings reveal that increasing the diversity of flavonoids within your diet could help prevent the development of health conditions such as type 2 diabetes, cardiovascular disease (CVD), cancer and neurological disease.

Flavonoids are found in plant foods like tea, blueberries, strawberries, oranges, apples, grapes, and even red wine and dark chocolate.

The study in Nature Food followed over 120 000 participants aged 40–70 for over a decade. It is the first study of its kind to suggest that there is a benefit to consuming a wide range of flavonoids beyond that of simply consuming a high quantity.

ECU Research Fellow, first author and co-lead of the study Dr Benjamin Parmenter, made the initial discovery that a flavonoid-diverse diet is good for health.

“Flavonoid intakes of around 500mg a day was associated with a 16% lower risk of all-cause mortality, as well as a ~10% lower risk of CVD, type 2 diabetes, and respiratory disease. That’s roughly the amount of flavonoids that you would consume in two cups of tea.”

Dr Parmenter added, however, that those who consumed the widest diversity of flavonoids, had an even lower risk of these diseases, even when consuming the same total amount. For example, instead of just drinking tea, it’s better to eat a range of flavonoid-rich foods to make up your intake, because different flavonoids come from different foods.

“We have known for some time that higher intakes of dietary flavonoids, powerful bioactives naturally present in many foods and drinks, can reduce the risk of developing heart disease, type 2 diabetes, and neurological conditions like Parkinson’s,” study co-lead Professor Aedín Cassidy from the Co-Centre for Sustainable Food Systems and Institute for Global Food Security at Queen’s said.

“We also know from lab data and clinical studies that different flavonoids work in different ways, some improve blood pressure, others help with cholesterol levels and decrease inflammation. This study is significant as the results indicate that consuming a higher quantity and wider diversity has the potential to lead to a greater reduction in ill health than just a single source.”

Professor Tilman Kuhn from the Medical University of Vienna, Universitat Wien and Queen’s University Belfast was also a co-lead author, noted that the importance of diversity of flavonoid intake has never been investigated until now, making this study very significant as the findings align with popular claims that eating colourful foods are invaluable to maintain good health.

“Eating fruits and vegetables in a variety of colours, including those rich in flavonoids, means you’re more likely to get the vitamins and nutrients you need to sustain a healthier lifestyle,” he said.

The first-ever dietary guidelines for flavonoids were released recently recommending increasing the consumption of flavonoids to maintain health.

“Our study provides inaugural evidence that we may also need to advise increasing diversity of intake of these compounds for optimal benefits,” Dr Parmenter said.

“The results provide a clear public health message, suggesting that simple and achievable dietary swaps, such as drinking more tea and eating more berries and apples for example, can help increase the variety and intake of flavonoid-rich foods, and potentially improve health in the long-term,” Professor Cassidy added.

Source: Edith Cowan University

Could ‘Pausing’ Necrosis be the Final Frontier in Ageing and Medicine?

Necrosis, unprogrammed cell death, spews a host of toxic molecules into the cellular environment. Credit: University College London

In a new study, published in Oncogene, a world-leading international team of scientists and clinicians explore the potential of necrosis to reshape our understanding and treatment of age-related conditions and even protect astronauts on longer journeys into space.

Challenging prevailing views, the paper brings together evidence from cancer biology, regenerative medicine, kidney disease, and space health to argue that necrosis is not merely an endpoint, but a key driver of aging that presents an opportunity for intervention.

Dr Keith Siew, an author of the study from UCL Centre for Kidney & Bladder Health, said: “Nobody really likes talking about death, even cell death, which is perhaps why the physiology of death is so poorly understood. And in a way necrosis is death. If enough cells die, then tissues die, then we die. The question is what would happen if we could pause or stop necrosis.”

Dr Carina Kern, lead author of the study and CEO of LinkGevity, a biotech company based at Cambridge’s Babraham Research Campus and part of the NASA Space-Health program, said: “Necrosis remains one of the last frontiers in medicine – a common thread across aging, disease, space biology, and scientific progress itself.”

Cells are the fundamental building blocks of life and can die in various ways. ‘Programmed’ forms of cell death are beneficial, carefully orchestrated processes that allow our tissues to replenish themselves and function well throughout life.

But ‘unprogrammed’ cell death, or necrosis, is an uncontrolled and catastrophic process that leads to tissue degeneration and biological decline.

At the centre of the necrotic process is calcium, a vital resource that effectively controls the cell by determining which functions are switched on or off. Calcium ions are normally maintained at a level that is 10 000 to 100 000 times higher outside the cell than inside.

When this finely tuned balance fails, calcium floods the cell like an electrical short circuit, pushing the cell into chaos. Unlike programmed death, where cells dismantle in an orderly manner, necrosis causes cells to rupture, spilling toxic molecules into surrounding tissues.

This sparks a chain reaction that causes widespread inflammation and affects tissue repair, creating a snowball effect that ultimately leads to frailty and the onset of chronic age-related conditions such as kidney disease, heart disease and Alzheimer’s.

Dr Siew added: “When cells die, it’s not always a peaceful process for the neighbours.”

Dr Kern explains: “Necrosis has been hiding in plain sight. As a final stage of cell death, it’s been largely overlooked. But mounting evidence shows it’s far more than an endpoint. It’s a central mechanism through which systemic degeneration not only arises but also spreads. That makes it a critical point of convergence across many diseases. If we can target necrosis, we could unlock entirely new ways to treat conditions ranging from kidney failure to cardiac disease, neurodegeneration, and even aging itself.”

Notably, it is in the kidneys that necrosis may have its most devastating and underappreciated impact. Necrosis induces kidney disease, which can lead to kidney failure requiring a transplant or dialysis. By age 75 nearly half of all individuals develop some degree of kidney disease as part of the natural aging process.

Dr Siew added: “With kidney disease, there’s no one underlying reason that the kidneys fail. It could be a lack of oxygen, inflammation, oxidative stress, a build-up of toxins, and so on. All of these stressors eventually lead to necrosis, which initiates a positive feedback loop that spirals out of control, leading to kidney failure. We can’t stop all of these stressors, but if you could intervene at the point of necrosis, you’d effectively achieve the same result.”

Another area where interrupting necrosis could have a big impact is spaceflight, where astronauts often experience accelerated ageing and kidney-related decline due to the effects of low gravity and exposure to cosmic radiation. A 2024 study involving Dr Siew demonstrated that the human kidney may be the ultimate bottleneck for long-duration space missions.

The authors say finding solutions to this accelerated aging and kidney disease may be the final frontier for human deep space exploration.

Dr Kern said: “In many age-related diseases – affecting diverse organs such as the lungs, kidneys, liver, brain, and cardiovascular system – relentless cascades of necrosis fuel the progression of disease. This is often alongside impaired healing that leads to fibrosis, inflammation and damaged cells. Each cascade triggers and amplifies the next.

“If we could prevent necrosis, even temporarily, we would be shutting down these destructive cycles at their source, enabling normal physiological processes and cell division to resume – and potentially even allowing for regeneration.”

Source: University College London

Can Engaging in Social Activities Prolong Life?

Photo by Jusfilm on Unsplash

A study in the  Journal of the American Geriatrics Society indicates that social engagement may help older individuals live longer.

In the study of 2268 US individuals aged 60 years and older who completed the Psychosocial and Lifestyle Questionnaires and provided blood samples in 2016, there was a strong association between engaging in social activities and a low risk of 4-year mortality. High social engagement was associated with a 42% lower mortality risk than low engagement.

Specific activities, such as charity work, engaging with grandchildren, and participation in sports or social clubs, were particularly significant predictors of a reduced risk of dying.

Also, analyses indicated that decelerated biological aging and greater physical activity levels played key roles in facilitating the beneficial relationship between social engagement and lower mortality rates.

“Staying socially active is more than a lifestyle choice. It is closely linked to healthier aging and longevity,” said corresponding author Ashraf Abugroun, MBBS, MPH, of the University of California, San Francisco. “These results underscore how participating in community life contributes to better health in older adults.”

Source: Wiley

Midlife Weight Loss Linked to Longer, Healthier Lives

Photo by I Yunmai on Unsplash

Losing weight via lifestyle adjustments can deliver significant long-term health benefits, without the need for surgery or anti-obesity drugs. Alongside preventing diabetes, it can help ward off chronic conditions including arterial and pulmonary diseases as well as cancers.

A University of Helsinki study tracked 23 000 individuals from Finland and the UK, aged 30 to 50 at the outset, over a period of 12 to 35 years. Health benefits were found in overweight men and women who lost an average of 6.5% of their body weight in early middle age and maintained it throughout the 12–35-year follow-up period. Weight maintenance is crucial. 

“The benefits of lifestyle-based weight management are widely discussed even though studies have found it surprisingly difficult to demonstrate health benefits beyond the prevention of diabetes,” notes Professor Timo Strandberg.  

The study he led is now filling this gap. 

“I hope the findings will inspire people to see that lifestyle changes can lead to major health improvements and a longer life. This is particularly important today as more people are overweight than when the collection of our research data began 35 years ago.” 

The study also supports the view that, for optimal health, a lifelong body mass index (BMI) under 25 is ideal.   

The study was published in JAMA Network Open, the open-access journal of the American Medical Association.

Source: University of Helsinki

Quality of Carbohydrates Matters for Healthy Ageing

Photo by Mariana Kurnyk

Intakes of dietary fibre as well as high-quality and total carbohydrates in midlife were favourably linked to healthy aging and other positive health outcomes in older women, according to a new study appearing in the journal JAMA Network Open.

“We’ve all heard that different carbohydrates can affect health differently, whether for weight, energy, or blood sugar levels. But rather than just look at the immediate effects of these macronutrients, we wanted to understand what they might mean for good health 30 years later,” said Andres Ardisson Korat, a scientist at Tufts University and lead author of the study. “Our findings suggest that carbohydrate quality may be an important factor in healthy aging.”

Researchers from Tufts University and Harvard T.H. Chan School of Public Health analysed data from Nurses’ Health Study questionnaires collected every four years between 1984 and 2016. They examined the midlife diets and eventual health outcomes of more than 47 000 women who were between the ages of 70 and 93 in 2016.  Intakes of total carbohydrates, refined carbohydrates, high-quality (unrefined) carbohydrates, carbohydrates from whole grains, fruits, vegetables, and legumes, dietary fibre, and the dietary glycaemic index and glycaemic load were derived from the validated food-frequency questionnaires. The researchers defined healthy aging as the absence of 11 major chronic diseases, lack of cognitive and physical function impairments, and having good mental health, as self-reported in the Nurses’ Health Study questionnaires. In the new study, 3706 participants met the healthy aging definition.

The analysis showed intakes of total carbohydrates, high-quality carbohydrates from whole grains, fruits, vegetables, and legumes, and total dietary fibre in midlife were linked to 6 to 37% greater likelihood of healthy aging and several areas of positive mental and physical health. In the other direction, intakes of refined carbohydrates (carbohydrates from added sugars, refined grains, and potatoes) and starchy vegetables were associated with 13% lower odds of healthy aging.

“Our results are consistent with other evidence linking consumption of fruits and vegetables, whole grains, and legumes with lower risks of chronic diseases, and now we see the association with physical and cognitive function outcomes,” said senior author Qi Sun, associate professor in the departments of nutrition and epidemiology at Harvard Chan School.

The authors note as a limitation that the study population was composed mostly of white health professionals; future research will be necessary to replicate these findings in more diverse cohorts. 

Ardisson Korat also noted that additional work is needed to understand the potential mechanisms linking dietary fiber and high-quality carbohydrates to healthy aging.

“Studies are starting to find an association between food choices in midlife and quality of life in later years. The more we can understand about healthy aging, the more science can help people live healthier for longer,” added Ardisson Korat.

Source: Tufts University

Analysis of Pulse Rate can Predict Faster Cognitive Decline in Older Adults

Photo by Matteo Vistocco on Unsplash

Healthy hearts are adaptable, and heartbeats exhibit complex variation as they adjust to tiny changes in the body and environment. Mass General Brigham researchers have applied a new way to measure the complexity of pulse rates, using data collected through wearable pulse oximetry devices. The new method, published in the Journal of the American Heart Association, provides a more detailed peek into heart health than traditional measures, uncovering a link between reduced complexity and future cognitive decline.

“Heart rate complexity is a hallmark of healthy physiology,” said senior author Peng Li, PhD, of the Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital (MGH) and the Division of Sleep and Circadian Disorders at Brigham and Women’s Hospital (BWH). “Our hearts must balance between spontaneity and adaptability, incorporating internal needs and external stressors.”

The study used data from 503 participants (average age 82, 76% women) in the Rush Memory and Aging Project. The researchers analysed overnight pulse rate measurements – collected by a fingertip pulse oximetry device known as the Itamar WatchPAT 300 device – and comprehensive measures of cognitive functions, collected around the same time as the pulse rate measurement and at least one annual follow-up visit up to 4.5 years later.

The team found that people with greater complexity in their heartbeats at baseline tend to experience slower cognitive decline over time. They determined that the conventional measures of heart rate variability did not predict this effect, indicating their measure was more sensitive in capturing heart functions predictive of cognitive decline.

The researchers plan to investigate whether pulse rate complexity can predict development of dementia, which would make it useful for identifying people at an early stage who might benefit from therapeutic interventions.

“The findings underscore the usefulness of our approach as a noninvasive measure for how flexible the heart is in responding to nervous system cues,” said lead author Chenlu Gao, PhD, also in the Department of Anesthesia, Critical Care and Pain Medicine at MGH. “It is suitable for future studies aimed at understanding the interplay between heart health and cognitive aging.”

Source: Mass General Brigham

Assessing Pain and Anxiety of Nursing Home Residents Unable to Speak

Photo by Pexels on Pixabay

As many as half of nursing home residents are cognitively impaired and may be unable to communicate symptoms such as pain or anxiety to the staff and clinicians caring for them. Therefore, information needed for the evaluation of symptoms and subsequent treatment decisions typically does not reliably exist in nursing home electronic health records (EHRs).

A new paper published in the International Journal of Geriatric Psychiatry reports on the novel adaptation of a commonly used symptom assessment instrument to more comprehensively acquire this difficult-to-obtain data with the ultimate goal of enabling knowledge-based expansion of palliative care services in nursing homes to address residents’ symptoms.

In the paper, part of the large, multi-state, multi-facility Utilizing Palliative Leaders in Facilities to Transform care for people with Alzheimer’s Disease (UPLIFT-AD) study researchers, including Regenstrief Institute, the Indiana University School of Medicine and the University of Maryland School of Social Work faculty, describe how they revamped and subsequently validated a symptom assessment tool used worldwide. The UPLIFT-AD researchers modified the instrument, originally designed for reporting by family members of individuals with dementia following their death, to enable reporting on the symptoms of current residents living with moderate to severe dementia by nursing home staff as well as family.

Led by Kathleen T. Unroe, MD, MHA, and John G. Cagle, PhD, the UPLIFT-AD team reports in the peer-reviewed paper that the tool they enhanced reliably addressed physical and emotional distress as well as well-being and symptoms that are precursors to end of life. This validation was critical as the researchers develop guidance for expansion of symptom recognition and management in any nursing home. Employing instruments used in other studies helps researchers to directly compare findings.

Dr. Unroe, Dr. Cagle and colleagues, including Wanzhu Tu, PhD, of the Regenstrief Institute and the IU School of Medicine, are in the late stages of the UPLIFT-AD clinical trial to enhance quality of care individuals with dementia by building capacity for palliative care within nursing homes.

“People receive care in nursing homes because they have significant needs – support for activities of daily living – as well as for complex, serious and multiple chronic conditions. But measuring symptoms of residents, especially those who are cognitively impaired, to address these needs is challenging,” said paper senior author Dr. Unroe, a Regenstrief Institute research scientist and an IU School of Medicine professor of medicine. “In my two decades of working as a clinician in nursing homes as well as a researcher, I have seen that often the information on symptoms that we want isn’t available consistently in the data that’s already collected or it isn’t collected at the frequency that we need to measure the impact of programs and approaches. And the gold standard for knowing if someone has a symptom, for example, if someone has pain or anxiety, to ask that person directly to assess the symptom, isn’t always possible for cognitively impaired residents. That’s why we took steps to validate a commonly used instrument in a wider population – individuals currently living with cognitive impairment – and added additional needed data points.

“While hospice care is typically available, there is widespread recognition that broader palliative care is needed in nursing homes. But there is no roadmap for how to provide it well. We hope that when we have our final results in 2026, UPLIFT-AD will prove to be a replicable model for implementing this much needed type of care.”

Source: Regenstrief Institute

Twin Study Offers New Insights into Whether Exercise Extends life

Photo by Robert Ruggiero on Unsplash

In a decades-long study following twins, researchers from the University of Jyväskylä, Finland, investigated the links between long-term leisure-time physical activity and mortality. They also sought to determine whether physical activity can mitigate the increased risk of mortality due to genetic predisposition to diseases. Moreover, they examined the relationship between physical activity and later biological aging. 

The study included 22 750 Finnish twins born before 1958 whose leisure-time physical activity was assessed in 1975, 1981 and 1990. Mortality follow-up continued until the end of 2020.

Moderate activity yields maximum longevity benefits

Four distinct sub-groups were identified from the data, which was based on leisure-time physical activity over the 15-year follow-up: sedentary, moderately active, active and highly active groups. When the differences in mortality between the groups were examined at the 30-year follow-up, it was found that the greatest benefit – a 7% lower risk of mortality – was achieved between the sedentary and moderately active groups. A higher level of physical activity brought no additional benefit. 

When mortality was examined separately in the short and long term, a clear association was found in the short-term: the higher the level of physical activity, the lower the mortality risk. In the long term, however, those who were highly active did not differ from those who were sedentary in terms of mortality.

“An underlying pre-disease state can limit physical activity and ultimately lead to death, not the lack of exercise itself.”

“This can bias the association between physical activity and mortality in the short term”,  says Associate Professor Elina Sillanpää from the Faculty of Sports and Health Sciences. 

Meeting physical activity guidelines does not guarantee a lower mortality risk

The researchers also investigated whether following the World Health Organization’s physical activity guidelines affects mortality and genetic disease risk. The guidelines suggest 150 to 300 minutes of moderate or 75 to 150 minutes of vigorous activity weekly. The study found that meeting these guidelines did not lower mortality risk or alter genetic disease risk. Even for twins who met the recommended levels of PA over a 15-year period, no statistically significant difference in mortality rates was found compared to their less active twin pair.

“The widely observed favorable association between physical activity and mortality are based on observational studies that are prone to bias from different sources.” 

“In our studies, we aimed to account for various sources of biases, and combined with the long follow-up period, we could not confirm that adhering to physical activity guidelines mitigates genetic cardiovascular disease risk or causally reduces mortality”, says postdoctoral researcher Laura Joensuu from the Faculty of Sports and Health Sciences.  

Link between physical activity and biological aging is U-shaped

For the subsample of twins, biological aging was determined from blood samples using epigenetic clocks. Epigenetic clocks allow a person’s biological aging rate to be estimated based on methyl groups that regulate gene expression and are linked to aging process. 

“We found that the association between leisure-time physical activity and biological aging was U-shaped: Biological aging was accelerated in those who exercised the least and the most,” says Sillanpää.

Other lifestyles, such as smoking and alcohol consumption, largely explained the favourable associations of physical activity with biological aging. 

Genetic data were available for 4897 twins. The genetic susceptibility of twins to coronary artery disease, as well as systolic and diastolic blood pressure was assessed using new polygenic risk scores, which sum the genome-wide susceptibility to morbidity. In addition, all-cause and cardiovascular mortality was followed in 180 identical twin pairs. The biological aging rate of 1153 twins was assessed from a blood sample.

Source: University of Jyväskylä

Lifestyle and Environmental Factors Affect Health and Ageing More than Genes

Photo by Mari Lezhava on Unsplash

A new study led by researchers from Oxford Population Health has shown that a range of environmental factors, including lifestyle (smoking and physical activity) and living conditions, have a greater impact on health and premature death than our genes.

The researchers used data from nearly half a million UK Biobank participants to assess the influence of 164 environmental factors and genetic risk scores for 22 major diseases on ageing, age-related diseases, and premature death. The study is published in Nature Medicine.

Key findings:

  • environmental factors explained 17% of the variation in risk of death, compared to less than 2% explained by genetic predisposition (as we understand it at present);
  • of the 25 independent environmental factors identified, smoking, socioeconomic status, physical activity, and living conditions had the most impact on mortality and biological ageing;
  • smoking was associated with 21 diseases; socioeconomic factors such as household income, home ownership, and employment status, were associated with 19 diseases; and physical activity was associated with 17 diseases;
  • 23 of the factors identified are modifiable;
  • early life exposures, including body weight at 10 years and maternal smoking around birth, were shown to influence ageing and risk of premature death 30-80 years later;
  • environmental exposures had a greater effect on diseases of the lung, heart and liver, while genetic risk dominated for dementias and breast cancer.

Professor Cornelia van Duijn, St Cross Professor of Epidemiology at Oxford Population Health and senior author of the paper, said, “Our research demonstrates the profound health impact of exposures that can be changed either by individuals or through policies to improve socioeconomic conditions, reduce smoking, or promote physical activity.

“While genes play a key role in brain conditions and some cancers, our findings highlight opportunities to mitigate the risks of chronic diseases of the lung, heart and liver which are leading causes of disability and death globally. The early life exposures are particularly important as they show that environmental factors accelerate ageing early in life but leave ample opportunity to prevent long-lasting diseases and early death.”

The authors used a unique measure of ageing (a new ‘ageing clock’) to monitor how rapidly people are ageing using blood protein levels. This enabled them to link environmental exposures that predict early mortality with biological ageing. This measure was previously shown to detect age-related changes, not only in the UK Biobank but also in two other large cohort studies from China and Finland.

Dr Austin Argentieri, lead author of the study at Oxford Population Health and Research Fellow at Massachusetts General Hospital, said “Our exposome approach allowed us to quantify the relative contributions of the environment and genetics to ageing, providing the most comprehensive overview to date of the environmental and lifestyle factors driving ageing and premature death. These findings underscore the potential benefits of focusing interventions on our environments, socioeconomic contexts, and behaviours for the prevention of many age-related diseases and premature death.”

Professor Bryan Williams, Chief Scientific and Medical Officer at the British Heart Foundation, added ‘Your income, postcode and background shouldn’t determine your chances of living a long and healthy life. But this pioneering study reinforces that this is the reality for far too many people.

“We have long known that risk factors such as smoking impact our heart and circulatory health, but this new research emphasises just how great the opportunity is to influence our chances of developing health problems, including cardiovascular disease, and dying prematurely. We urgently need bold action from Government to target the surmountable barriers to good health that too many people in the UK are facing.”

The research shows that whilst many of the individual exposures identified played a small part in premature death, the combined effect of these multiple exposures together over the life course (referred to as the exposome) explained a large proportion of premature mortality variation. The insights from this study pave the way for integrated strategies to improve the health of ageing populations by identifying key combinations of environmental factors that shape risk of premature death and many common age-related diseases simultaneously.

Professor van Duijn said, “Studies on environmental health have tended to focus on individual exposures based on a specific hypothesis. While this approach has seen many successes, the method has not always yielded reproducible and reliable findings. Instead, we have followed a ‘hypothesis free’ exposome approach and studied all available exposures to find the major drivers of disease and death.

“We have made a big leap forward in understanding how to provide accurate evidence on the causes and consequences of age-related diseases by combining novel computational methods with clinical and epidemiological knowledge to explore the interplay between multiple exposures. In an ever-changing environment, it is critical that we combine these techniques with novel advances in smart technology to monitor lifestyle and environment, as well as with biological data, to understand the impact of the environment over time. There are a lot of questions still to be answered related to diet, lifestyle, and exposure to new pathogens (such as bird flu and COVID-19) and chemicals (think of pesticides and plastics), and the impact of environmental and genetic factors in different populations.”

The paper. ‘Integrating the environmental and genetic architectures of aging and mortality‘. can be ready in Nature Medicine.

Source: University of Oxford