Tag: inflammation

Limiting the Damage from an Asthma Attack could Halt the Disease

Credit: Pixabay CC0

Scientists at King’s College London have discovered that the features of asthma attacks, a disease usually treated as being inflammatory, in fact stem from constriction of airways, making breathing difficult. The new study, published in Science, shows for the first time that many features of an asthma attack – inflammation, mucus secretion, and damage to the airway barrier that prevents infections – result from this mechanical constriction in a mouse model.

The findings suggest that blocking a process that normally causes epithelial cell death could prevent the damage, inflammation, and mucus that result from an asthma attack.

Professor Jody Rosenblatt from King’s College London said: “Our discovery is the culmination of more than ten years work. As cell biologists who watch processes, we could see that the physical constriction of an asthma attack causes widespread destruction of the airway barrier. Without this barrier, asthma sufferers are far more likely to get long-term inflammation, wound healing, and infections that cause more attacks. By understanding this fundamental mechanism, we are now in a better position to prevent all these events.”

Asthma symptoms include wheezing, coughing, feeling breathlessness and a tight chest. Triggers such as pollen or dust can make asthma symptoms worse and can lead to a life-threatening asthma attack.

Despite the disease commonality, the causes of asthma are still not understood. Current medications treat the consequences of an asthma attack by opening the airways, calming inflammation, and breaking up the sticky mucus which clogs the airway, which help control asthma, but do not prevent it.

The answer to stopping asthma symptoms may lie in cell extrusion, a process the researchers discovered that drives most epithelial cell death. Scientists used mouse lung models and human airway tissue to discover that when the airways contract, known as bronchoconstriction, the epithelial cells that line the airway get squeezed out to later die.

Because bronchoconstriction causes so many cell extrusions, it damages the airway barrier which causes inflammation and excess mucus.

In previous studies, the scientists found that the chemical compound gadolinium can block extrusion. In this study, they found it could work in mice to prevent the excess extrusion that causes damage and inflammation after an asthma attack. The authors note that gadolinium has not been tested in humans and has not been deemed to be safe or efficacious.

Professor Rosenblatt said: “This constriction and destruction of the airways causes the post-attack inflammation and excess mucus secretion that makes it difficult for people with asthma to breathe.

“Current therapies do not prevent this destruction – an inhaler such as Albuterol opens the airways, which is critical to breathing but, dishearteningly, we found it does not prevent the damage and the symptoms that follow an attack. Fortunately, we found that we can use an inexpensive compound, gadolinium which is frequently used for MRI imaging, to stop the airway damage in mice models as well as the ensuing inflammation and mucus secretion. Preventing this damage could then prevent the build-up of musculature that cause future attacks.”

Professor Chris Brightling from the University of Leicester and one of the co-authors of the study said: “In the last decade there has been tremendous progress in therapies for asthma particularly directed towards airway inflammation. However, there remains ongoing symptoms and attacks in many people with asthma. This study identifies a new process known as epithelial extrusion whereby damage to the lining of the airway occurs as a consequence of mechanical constriction and can drive many of the key features of asthma. Better understanding of this process is likely to lead to new therapies for asthma.”

The discovery of the mechanics behind cell extrusion could underlie other inflammatory diseases that also feature constriction such as cramping of the gut and inflammatory bowel disease.

Source: King’s College London

Making Long-term Memories Requires DNA Damage and Brain Inflammation

Source: CC0

Just as you can’t make an omelette without breaking eggs, scientists at Albert Einstein College of Medicine have found that you can’t make long-term memories without DNA damage and inflammation in the brain. Their surprising findings were published online today in the journal Nature.

“Inflammation of brain neurons is usually considered to be a bad thing, since it can lead to neurological problems such as Alzheimer’s and Parkinson’s disease,” said study leader Jelena Radulovic, MD, PhD, professor of psychiatry and behavioural sciences at Einstein. “But our findings suggest that inflammation in certain neurons in the brain’s hippocampal region is essential for making long-lasting memories.”

The hippocampus has long been known as the brain’s memory centre. Dr Radulovic and her colleagues found that a stimulus sets off a cycle of DNA damage and repair within certain hippocampal neurons that leads to stable memory assemblies, ie clusters of brain cells representing past experiences.

From shocks to stable memories

The researchers discovered this memory-forming mechanism by giving mice brief, mild shocks sufficient to form an episodic memory of the shock event. Then, they analysed neurons in the hippocampal region and found that genes participating in an important inflammatory signalling pathway had been activated.

“We observed strong activation of genes involved in the Toll-Like Receptor 9 (TLR9) pathway,” said Dr Radulovic, who is also director of the Psychiatry Research Institute at Montefiore Einstein (PRIME). “This inflammatory pathway is best known for triggering immune responses by detecting small fragments of pathogen DNA. So at first we assumed the TLR9 pathway was activated because the mice had an infection. But looking more closely, we found, to our surprise, that TLR9 was activated only in clusters of hippocampal cells that showed DNA damage.”

Brain activity routinely induces small breaks in DNA that are repaired within minutes. But in this population of hippocampal neurons, the DNA damage appeared to be more substantial and sustained.

Triggering inflammation to make memories

Further analysis showed that DNA fragments, along with other molecules resulting from the DNA damage, were released from the nucleus, after which the neurons’ TLR9 inflammatory pathway was activated; this pathway in turn stimulated DNA repair complexes to form at an unusual location: the centrosomes. These organelles are present in the cytoplasm of most animal cells and are essential for coordinating cell division. But in neurons – which don’t divide – the stimulated centrosomes participated in cycles of DNA repair that appeared to organise individual neurons into memory assemblies.

“Cell division and the immune response have been highly conserved in animal life over millions of years, enabling life to continue while providing protection from foreign pathogens,” Dr. Radulovic said. “It seems likely that over the course of evolution, hippocampal neurons have adopted this immune-based memory mechanism by combining the immune response’s DNA-sensing TLR9 pathway with a DNA repair centrosome function to form memories without progressing to cell division.”

Resisting inputs of extraneous information

During the week required to complete the inflammatory process, the mouse memory-encoding neurons were found to have changed in various ways, including becoming more resistant to new or similar environmental stimuli. “This is noteworthy,” said Dr Radulovic, “because we’re constantly flooded by information, and the neurons that encode memories need to preserve the information they’ve already acquired and not be ‘distracted’ by new inputs.”

“This is noteworthy,” said Dr Radulovic, “because we’re constantly flooded by information, and the neurons that encode memories need to preserve the information they’ve already acquired and not be ‘distracted’ by new inputs.”

Importantly, the researchers found that blocking the TLR9 inflammatory pathway in hippocampal neurons not only prevented mice from forming long-term memories but also caused profound genomic instability, ie, a high frequency of DNA damage in these neurons.

“Genomic instability is considered a hallmark of accelerated aging as well as cancer and psychiatric and neurodegenerative disorders such as Alzheimer’s,” Dr Radulovic said.

“Drugs that inhibit the TLR9 pathway have been proposed for relieving the symptoms of long COVID. But caution needs to be shown because fully inhibiting the TLR9 pathway may pose significant health risks.”

PhD Student Elizabeth Wood and Ana Cicvaric, a postdoc in the Radulovic lab, were the study’s first authors at Einstein.

Source: Albert Einstein College of Medicine

Scientists Peer into a Transporter Protein for Inflammatory Signals

In the human body, a protein carrier called SPNS2 transports S1P molecules from endothelial cells to rally immune cell response in infected organs and tissues, resulting in inflammation. By enlarging the entire SPNS2 structure using nanoparticles, the S1P molecules contained within can be viewed via cryogenic electron microscopy. Using this information, small molecules can be developed to inhibit this signalling pathway and treat inflammatory diseases.

Scientists at the National University of Singapore and colleagues in China have analysed the structure of the SPNS2 protein at an atomic level that could provide greater insights into how S1P signalling molecules are released to communicate with the immune cells to regulate inflammatory responses. Their findings are published in Cell Research.

“Seeing is believing. This work shows that SPNS2 is directly exporting S1P for signalling and it is possible to inhibit its transport function with small molecules. This work provides the foundation for understanding of how S1P is released by SPNS2 and how this protein function is inhibited by small molecules for treatment of inflammatory diseases,” said team leader Dr Nguyen Nam Long.

The SPNS2 protein allows the binding of the S1P signalling molecules to trigger the immune cells to leave the lymph nodes and induce inflammation in different parts of the body when needed.

Made up of amino acids, the SPNS2 protein is malleable enough to change its shape and structure to release the S1P signalling molecules through small cavities found within the protein.

Through the discovery of how the SPNS2 protein releases S1P molecules, the SPNS2 structure can be exploited for future drug development.

Similar to discovering how the shape of the lock looks like before the key can be designed, this finding sheds more light into how future drugs can be designed to better target the protein to increase drug efficacy.

This finding builds on previous research which found that deleting SPNS2 protein from a pre-clinical model effectively blocks the S1P signalling pathway so that the S1P signalling molecules are unable to be transported to prompt immune cells to leave the lymph node to induce inflammation.

Both SPNS2 protein and S1P signalling molecule are required for immune cell recruitment to inflammatory organs, which goes towards treating various inflammatory diseases.

“Using pre-clinical models, we have shown that targeting SPNS2 proteins in the body blocks inflammatory responses in disease conditions, such as multiple sclerosis. This work has provided us a possibility to inhibit its transport function with small molecules that will go a long way to treating inflammatory diseases more efficiently and effectively,” said Dr Nguyen.

Source: National University of Singapore, Yong Loo Lin School of Medicine

Scientists Give Macrophages First-aid ‘Backpacks’ to Calm TBI Inflammation

Colourised electron micrograph image of a macrophage. Credit: NIH

Scientists have created a new treatment for traumatic brain injury (TBI). The new approach leverages macrophages, which can increase or decrease inflammation in response to infection and injury. The team attached “backpacks” containing anti-inflammatory molecules directly to the macrophages. These molecules kept the cells in an anti-inflammatory state when they arrived at the injury site in the brain, enabling them to reduce local inflammation and mitigate the damage caused. The research is reported in PNAS Nexus.

“Every year, millions of people suffer from a TBI, but there is currently no treatment beyond managing symptoms. We have applied our cellular backpack technology – which we previously used to improve macrophages’ inflammatory response to cancerous tumours – to deliver localised anti-inflammatory treatment in the brain, which helps mitigate the cascade of runaway inflammation that causes tissue damage and death in a human-relevant model,” said senior author Samir Mitragotri, PhD, in whose lab the research was performed.

Stopping a runaway inflammation train

There is currently no treatment for the damage caused to brain tissue during a traumatic brain injury (TBI), beyond managing a patient’s symptoms. One of the main drivers of TBI-caused damage is a runaway inflammatory cascade in the brain.

As cells die from the impact, they release a cocktail of pro-inflammatory cytokine molecules that attract immune cells to clean up the damage. But the same cytokine molecules can also disrupt the blood-brain barrier, which causes blood to leak into the brain. Blood accumulation in the brain causes swelling, impaired oxygen delivery, and increased inflammation, and creates a vicious cycle of bleeding and damage that drives even more cell death.

The Mitragotri lab saw an opportunity in this problem.

“It’s generally believed anti-inflammatory therapies can be effective for treating TBI, but so far, none of them have proven effective clinically. Our previous work with macrophages has shown us that we can use our backpack technology to effectively steer their behaviour when they arrive at the injury site. Since these cells are already active players in the body’s natural immune response to a TBI, we had a hunch we could augment that pre-existing biology to reduce the initial damage,” said co-first author Rick Liao, Ph.D., a Postdoctoral Fellow at the Wyss Institute and SEAS.

“Body, heal thyself”…with backpacks

Macrophages are very malleable cells and can “switch” between pro-inflammatory and anti-inflammatory states. While the team’s previous work in cancer had been focused on keeping macrophages in a pro-inflammatory state when they arrive at the inflammation-reducing microenvironment of a tumour, this new project would be trying to do the opposite: keep the macrophages “calm” in the inflammation-riddled setting of a brain injury.

To do so, they used a disc-shaped “backpack” they had previously designed to treat multiple sclerosis that contained layers of two anti-inflammatory molecules: dexamethasone, a steroid, and interleukin-4, a cytokine that encourages macrophages to adopt an anti-inflammatory state. They then incubated these microparticles with both human and pig macrophages in vitro and saw that the backpacks stably stuck to the cells without causing any negative effect. They also observed that application of their backpacks decreased the expression of pro-inflammatory biomarkers and increased the expression of anti-inflammatory biomarkers, retaining the pig macrophages in a healing state.

But to prove that this shift would work in the body, they had to test the backpack-bearing macrophages in vivo. They chose pigs as their model organism because their brains’ structures and responses to injury more closely mimic those of humans than mice.

“Probably our biggest challenge in this project was scaling up production to match what we needed to run the experiments. Our previous studies were done in rodents, which required about two million macrophages and four million backpacks administered per subject. For the porcine study, we needed 100 million macrophages and 200 million backpacks per subject – on the scale of what would be administered in humans – and lots of helping hands,” said co-first author Neha Kapate, PhD, a Postdoctoral Fellow at the Wyss Institute and SEAS.

Once they had generated enough backpack-wearing porcine macrophages, they infused them into the pigs’ bloodstreams four hours after a TBI. Seven days later, they analysed the animals’ brains. Pigs that had received the macrophage treatment showed a high concentration of the cells in the area immediately surrounding the injury site, their lesions were 56% smaller, and there was significantly less haemorrhaging than in untreated animals.

Local immune cells also displayed a lower amount of a pro-inflammatory activation marker called CD80, indicating that the macrophages had accomplished their damage control by reducing inflammation in the brain. Corroborating that data, the levels of two soluble biomarkers for inflammation in the blood and cerebrospinal fluid were lower in treated animals than in untreated animals. The macrophage treatment also did not cause any negative effects.

The team plans to conduct future studies that focus on elucidating exactly how their anti-inflammatory macrophage therapy affects the blood-brain barrier’s integrity to prevent bleeding, which could also hold promise for treating other conditions like hemorrhagic strokes.

“Macrophages’ susceptibility to their local environment has historically prevented scientists from taking full advantage of their immune-modulating capabilities. This impressive study describes a truly novel and potentially powerful macrophage-based therapy for treating the inflammation that is the root cause of so many human afflictions in an effective and non-invasive way that works with biology rather than against it,” said Wyss Founding Director Donald Ingber, MD, PhD.

Source: Wyss Institute for Biologically Inspired Engineering at Harvard

A Gene for ‘Explosive’ Cell Death Drives Runaway Inflammation

Australian researchers at Walter and Eliza Hall Institute have found that a genetic change that increases the risk of inflammation, through necroptosis, a process described as ‘explosive’ cell death, is carried by up to 3% of the global population.

The study, which is published in Nature Communications, may explain why some people have an increased chance of developing conditions like inflammatory bowel disease or suffer more severe reactions to infections with bacteria like Salmonella.

Immune power of ‘explosive’ cell death

Programmed cell death is a normal part of the body’s immune system and maintenance, removing unwanted, damaged or dangerous cells, and preventing the spread of viruses, bacteria, and even cancer.

First author WEHI’s Dr Sarah Garnish is first author on the paper and said that while there are various types of cell death, necroptosis is distinguished by its ferocity – the cells essentially explode, which sounds an alarm for other cells in the body to respond.

“This is a good thing in the case of a viral infection, where necroptosis not only kills the infected cells but instructs the immune system to respond, clean things up, and start a more specific, long lived immune response,” Dr Garnish said.

“But when necroptosis is uncontrolled or excessive, the inflammatory response can actually trigger disease.”

Genetic brakes

The gatekeeper of necroptosis is the gene MLKL. When the body needs to trigger a cell death response with plenty of firepower, the cellular brakes that normally keep MLKL in-check are released. However, some of us make a form of MLKL with flimsy brakes.

Dr Garnish and her co-authors have been able to quantify this at a population level for the first time.

“For most of us, MLKL will stop when the body tells it to stop, but 2-3% of people have a form of MLKL that is less responsive to stop signals,” Dr Garnish said.

“While 2-3% doesn’t seem like much, when you consider the global population, this adds up to many millions of people carrying a copy of this gene variant.”

Project leader Dr Joanne Hildebrand said the research proposes that a common genetic change like this can combine with a person’s lifestyle, infection history and broader genetic makeup to increase the risk of inflammatory diseases and severe reactions to infections.

This is known as polygenic risk, the combined influence of multiple genes on developing a certain trait or condition.

“Taking Type 2 diabetes as an example, it’s rare that just one gene change determines whether someone will develop the condition,” Dr Hildebrand said.

“Instead many different genes play a role, as do environmental factors, like diet and smoking.”

Dr Hildebrand said it’s not as simple as directly connecting this difference in the MLKL gene with the chance of someone developing a specific condition.

“We haven’t tagged this MLKL gene variant to any one particular disease yet, but we see real potential for it to combine with other gene variants, and other environmental cues, to influence the intensity of our inflammatory response.”

Towards personalised medicine

Our understanding of MLKL has come a long way since it surfaced by chance in a WEHI lab more than 20 years ago. Today’s research opens the door for future tests and screening to determine disease risks.

Genome sequencing is becoming cheaper and more readily accessible. As more genomic data becomes available to researchers, it increases the likelihood that they can link common genetic variants, like the one described for MLKL, with disease.

In the future researchers hope to pinpoint the genetic changes that might mean someone is more likely to have a severe case of COVID-19, or less likely to bounce back after chemotherapy.

“Every piece of information like this helps us make personalised medicine more of a reality,” said Dr Garnish.

The WEHI team is also investigating whether uncontrolled necroptosis could be beneficial in some circumstances. For example, could people with the MLKL gene variant have a stronger cellular defensive response to certain viruses?

“Gene changes like this don’t usually accumulate in the population over time unless there is a reason for it – they generally get passed on because they do something good,” said Dr Garnish.

“We’re looking at the downsides of having this gene change, but we’re looking for the upsides as well.”

Source: Walter and Eliza Hall Institute

Does the ‘Hygiene Hypothesis’ Still Hold Water?

Photo by Andrea Piacquadio on Unsplash

Over the last few decades, there has been growing popularity for the ‘hygiene hypothesis’, which suggests that some level of microbial exposure helps protects against developing allergy. Now, an article published in Science Immunology by researchers from Karolinska Institutet challenges this hypothesis by showing that mice with high infectious exposures from birth have the same, if not an even greater ability to develop allergic immune responses than ‘clean’ laboratory mice.

Studies have suggested that certain infections might reduce the production of inflammatory antibodies to allergens and alter the behaviour of T cells involved in allergies. It has also been suggested that ‘good’ intestinal bacteria could shut off inflammation elsewhere in the body.

Robust allergic responses

Researchers have now compared the allergic immune response in ‘dirty’ wildling mice to those of typical clean laboratory mice. They found very little evidence that the antibody response was altered or that the function of T cells changed in a meaningful way. Nor did anti-inflammatory responses evoked by good gut bacteria appear to be capable of switching off the allergic immune response. On the contrary, wildling mice developed robust signs of pathological inflammation and allergic responses when exposed to allergens.

“This was a little unexpected but suggests that it’s not as simple as saying, ‘dirty lifestyles will stop allergies while clean lifestyles may set them off’. There are probably very specific contexts where this is true, but it is perhaps not a general rule,” says Jonathan Coquet, co-author of the study and Associate Professor at Karolinska Institutet.

More like the human immune system

The wildling mice are genetically identical to clean laboratory mice but are housed under ‘semi-natural’ conditions and have rich microbial exposures from birth.

“The immune systems of wildling mice better represent the human immune system and so we hope that they can bring us closer to the truth of how microbes act upon the body,” says Jonathan Coquet.

The findings contribute to the general understanding of how allergies may arise and may also have clinical implications. Using experimental infections to treat patients suffering from inflammatory diseases has also been attempted in recent clinical trials. For example, infecting people with worms or performing faecal transplantations has been proposed as a tool to combat inflammatory diseases. Newborns delivered through C-section, have had maternal faecal transplantation and bacterial supplementation with the aim of promoting good bacteria in the baby’s gut and the child’s future health.

Beneficial effects of exposure not clear as we’d like

“This field of research can provide important insights into how infections and microbes can be used to facilitate health, but it is still in its infancy. Our study is a reminder that general and broad exposures to microbes may not have the clear beneficial effects that we wish them to have,” says Susanne Nylén, co-author of the study and Associate Professor at the Department of Microbiology, Tumor and Cell Biology at Karolinska Institutet.

Source:

Study Links Hot Flashes to Cardiovascular Risk Factors

Photo by CDC on Unsplash

It has long been known that hot flashes are linked to a number of adverse health effects. Emerging data suggests an association between them and cardiovascular disease. A new study is the first to link physiologically assessed hot flashes with heightened systemic inflammation – a risk factor for cardiac disease. Study results will be presented during the 2023 Annual Meeting of The Menopause Society in Philadelphia September 27-30.

Vasomotor symptoms, more often referred to as hot flashes, are one of the most common symptoms identified during the menopause transition, with roughly 70% of midlife women reporting them. Not only do they interfere with a woman’s quality of life, but they have also been related to physical health risks, such as cardiovascular disease.

Previous research linking hot flashes with heightened systemic inflammation has relied on self-reporting to document the frequency and severity of the hot flashes. These self-reports of hot flashes are limited as they ask women to recall hot flashes over weeks or longer and may be subject to memory or reporting biases. A new study that included 276 participants from the MsHeart study, however, utilised sternal skin conductance to physiologically assess hot flashes and tested whether more frequent physiologically assessed hot flashes are associated with heightened system inflammation.

While large increases in inflammatory markers indicate acute infection or clinical disease, small and sustained increases of markers of inflammation that are in the physiologically normal range are predictive of later disease risk. For example, small and/or sustained increases in inflammatory biomarkers (conceptualised as heightened levels of systemic inflammation) have been related to plaque development and atherosclerotic cardiovascular disease.

Based on the results, the researchers concluded that physiologically assessed hot flashes during wake were associated with higher levels of a high-sensitivity C-reactive protein, even after adjusting for potential explanatory factors such as age, education, race/ethnicity, body mass index, and oestradiol.

The results will be presented during the Annual Meeting of The Menopause Society as part of the presentation entitled “Physiologically measured vasomotor symptoms and systemic inflammation among midlife women.”

“This is the first study to examine physiologically measured hot flashes in relation to inflammation and adds evidence to a growing body of literature suggesting that hot flashes may signify underlying vascular risk and indicate women who warrant focused cardiovascular disease prevention efforts,” says Mary Carson, MS, lead author from the Department of Psychology at the University of Pittsburgh.

“Since heart disease is the leading cause of death for women in the US, studies like these are especially valuable,” adds Dr Stephanie Faubion, medical director of The Menopause Society. “Healthcare professionals need to ask their patients about their hot flash experiences as they not only interfere with their quality of life but may also indicate other risk factors.”

Source: EurekAlert!

Inflammation Discovery Could Lead to a Way to Slow Aging

Colourised electron micrograph image of a macrophage. Credit: NIH

University of Virginia School of Medicine researchers have discovered a key driver of chronic inflammation that accelerates aging. This could lead to treatments that let people live longer, healthier lives, and prevent age-related conditions such as cardiovascular disease and devastating brain disorders.

Improper calcium signalling in the mitochondria of certain immune cells seems to be the culprit behind this chronic age-related inflammation. Mitochondria rely heavily on calcium signalling, and they are the powerhouses of cells.

The UVA Health researchers, led by Bimal N. Desai, PhD, found that in macrophages, mitochondria lose their ability to take up and use calcium with age. This, the researchers show, leads to chronic inflammation responsible for many of the ailments that afflict our later years.

The researchers believe that increasing calcium uptake by the mitochondrial macrophages could prevent the harmful inflammation and its terrible effects. Because macrophages reside in all organs of our bodies, including the brain, targeting such “tissue-resident macrophages” with appropriate drugs may allow us to slow age-associated neurodegenerative diseases.

“I think we have made a key conceptual breakthrough in understanding the molecular underpinnings of age-associated inflammation,” said Desai, of UVA’s Department of Pharmacology and UVA’s Carter Immunology Center. “This discovery illuminates new therapeutic strategies to interdict the inflammatory cascades that lie at the heart of many cardiometabolic and neurodegenerative diseases.”

The inflammation of aging – ‘Inflammaging’

Macrophages swallow up dead or dying cells, removing cellular debris, and patrol for pathogens and other foreign invaders. In this latter role, they act as important sentries for our immune systems, calling for help from other immune cells as needed.

Scientists have known that macrophages become less effective with age, but it has been unclear why. Desai’s new discovery suggests answers.

Desai and his team say their research has identified a “keystone” mechanism responsible for age-related changes in the macrophages. These changes, the scientists believe, make the macrophages prone to chronic, low-grade inflammation at the best of times. And when the immune cells are confronted by an invader or tissue damage, they can become hyperactive. This drives what is known as “inflammaging” – chronic inflammation that drives aging.

Further, the UVA Health scientists suspect that the mechanism they have discovered will hold true not just for macrophages but for many other related immune cells generated in the bone marrow. That means we may be able to stimulate the proper functioning of those cells as well, potentially giving our immune systems a big boost in old age, when we become more susceptible to disease.

Next steps

Fixing “inflammaging” won’t be as simple as taking a calcium supplement. The problem isn’t a shortage of calcium so much as the macrophages’ inability to use it properly. But Desai’s new discovery has pinpointed the precise molecular machinery involved in this process, so we should be able to discover ways to stimulate this machinery in aging cells.

“This highly interdisciplinary research effort, at the interface of computational biology, immunology, cell biology and biophysics, wouldn’t have been possible without the determination of Phil Seegren, the graduate student who spearheaded this ambitious project,” Desai said. “Now, moving forward, we need an equally ambitious effort to figure out the wiring that controls this mitochondrial process in different types of macrophages and then manipulate that wiring in creative ways for biomedical impact.”

Source: University of Virginia Health System

Study Reveals How The Brain Detects and Regulates Inflammation

Source: CC0

A study published in the journal Neuron has revealed the existence of a circuit in the brain that senses and regulates the anti-inflammatory response, including the triggering of behaviours associated with sickness and releasing cortisone, a potent negative regulator of immune responses. This circuit embodies a two-way connection between the brain and immune system.

Whenever infections or injuries occur, the immune system is triggered to control the infection and repair damaged tissue. This process involves the release of pro-inflammatory mediators that inform the brain of the body’s immune status and coordinate the immune response. In response to this signal, the brain sets off a complex reaction known as ‘sickness behaviour’ whose purpose is to reassign energy to the body’s different systems. This state is associated with behavioural changes including social avoidance and lethargy, metabolic adjustments such as fever and loss of appetite, and the release of hormones such as cortisone, to increase resistance to infection while also regulating immune responses.

In this study, a multidisciplinary group consisting of neurobiologists and immunologists from the Institut Pasteur, Inserm and the CNRS discovered a novel circuit used by the brain to measure inflammation levels in the blood and, in response to this, regulate inflammation. A region of the brainstem known as the vagal complex directly detects levels and types of inflammatory hormones in the bloodstream. This information is then relayed to neurons in another region of the brainstem called the parabrachial nucleus, which also receives information related to pain and certain aversive or traumatic memories. In turn, these neurons activate neurons in the hypothalamus leading to a rapid increase in cortisone in the blood.

The scientists used state-of-the-art neuroscience approaches to identify this circuit, which enabled them to individually observe the neurons involved during inflammation. The experts observed how the activity of specific neurons in the parabrachial nucleus could regulate the production of white blood cells involved in the immune response. “This research demonstrates that neural activity in the brain alone can have a powerful effect on the development of immune responses during infection or injury. It therefore provides a clear example of the powerful two-way connection between the body and brain. It also fuels our ambition to discover the impact of our brain on the way we interact with microbes, fight off pathogens and heal wounds,” explains Gérard Eberl, Head of the Institut Pasteur’s Microenvironment and Immunity Unit.

The discovery of this circuit opens up new opportunities for research that will jointly contribute to the fields of neurobiology and immunology: “This study gives us additional tools to better understand the impact of systemic inflammation on our brain, mood and on certain neurodegenerative processes,” adds Gabriel Lepousez, a neurobiologist in the Perception and Memory Unit (Institut Pasteur/CNRS).

Given the established role of the parabrachial nucleus in aversive memory processes, potential infectious threats could be averted if this circuit is reactivated by the memory of past inflammatory or aversive experiences. Drawing on this neuro-immune communication, the immune system could therefore benefit from the brain’s ability to predict and anticipate threats in our environment.

Source: Institut Pasteur

Training Cells to Fight Both Chronic Inflammatory and Infectious Diseases

T cell
Scanning Electron Micrograph image of a human T cell. Credit: NIH/NIAID

Researchers from the University of Queensland have identified a pathway in cells that could be used to reprogram the body’s immune system to fight back against both chronic inflammatory and infectious diseases such as E. Coli.

Reporting their findings in the open-access journal PNAS, Dr Kaustav Das Gupta and Professor Matt Sweet found that a glucose-derived molecule in immune cells can both stop bacteria growing and dampen inflammatory responses.

According to Dr Das Gupta, the discovery is a critical step towards future therapeutics that train immune cells.

“The effects of this molecule called ribulose-5-phosphate on bacteria are striking – it can cooperate with other immune factors to stop disease-causing strains of the E. coli bacteria from growing,” Dr Das Gupta said.

“It also reprograms the immune system to switch off destructive inflammation, which contributes to both life-threatening infectious diseases such as sepsis as well as chronic inflammatory diseases like respiratory diseases, chronic liver disease, inflammatory bowel disease, rheumatoid arthritis, heart disease, stroke, diabetes and dementia.”

The research was carried out on a strain of E. coli bacteria, responsible for 80% of urinary tract infections and also a common cause of sepsis. Pre-clinical trials confirmed the role of this pathway in controlling bacterial infections.

Professor Sweet said that human cells were also used to demonstrate that ribulose-5-phosphate reduces the production of molecules that drive chronic inflammatory diseases.

“Host-directed therapies which train our immune systems to fight infections, will become increasingly important as more types of bacteria become resistant to known antibiotics,” Professor Sweet said.

“A bonus is that this strategy also switches off destructive inflammation, which gives it the potential to combat chronic disease.

“By boosting the immune pathway that generates ribulose-5-phosphate, we may be able to give the body the power to fight back against inflammatory and infectious diseases – not one, but two of the major global challenges for human health.”

Many current anti-inflammatory therapies target proteins on the outside of cells but because this pathway occurs inside cells, the researchers devised a new approach to target the pathway using mRNA technology.

Source: University of Queensland