Category: Neurology

“Movies” with Colour and Music Visualise Brain Activity Data in Beautiful Detail

Novel toolkit translates neuroimaging data into audiovisual formats to aid interpretation

Simple audiovisualisation of wide field neural activity. Adapted from Thibodeaux et al., 2024, PLOS ONE, CC-BY 4.0

Complex neuroimaging data can be explored through translation into an audiovisual format – a video with accompanying musical soundtrack – to help interpret what happens in the brain when performing certain behaviours. David Thibodeaux and colleagues at Columbia University, US, present this technique in the open-access journal PLOS ONE on February 21, 2024. Examples of these beautiful “brain movies” are included below.

Recent technological advances have made it possible for multiple components of activity in the awake brain to be recorded in real time. Scientists can now observe, for instance, what happens in a mouse’s brain when it performs specific behaviours or receives a certain stimulus. However, such research produces large quantities of data that can be difficult to intuitively explore to gain insights into the biological mechanisms behind brain activity patterns.

Prior research has shown that some brain imaging data can be translated into audible representations. Building on such approaches, Thibodeaux and colleagues developed a flexible toolkit that enables translation of different types of brain imaging data – and accompanying video recordings of lab animal behaviour – into audiovisual representations.

The researchers then demonstrated the new technique in three different experimental settings, showing how audiovisual representations can be prepared with data from various brain imaging approaches, including 2D wide-field optical mapping (WFOM) and 3D swept confocally aligned planar excitation (SCAPE) microscopy.

The toolkit was applied to previously-collected WFOM data that detected both neural activity and brain blood flow changes in mice engaging in different behaviours, such as running or grooming. Neuronal data was represented by piano sounds that struck in time with spikes in brain activity, with the volume of each note indicating magnitude of activity and its pitch indicating the location in the brain where the activity occurred. Meanwhile, blood flow data were represented by violin sounds. The piano and violin sounds, played in real time, demonstrate the coupled relationship between neuronal activity and blood flow. Viewed alongside a video of the mouse, a viewer can discern which patterns of brain activity corresponded to different behaviours.

The authors note that their toolkit is not a substitute for quantitative analysis of neuroimaging data. Nonetheless, it could help scientists screen large datasets for patterns that might otherwise have gone unnoticed and are worth further analysis.

The authors add: “Listening to and seeing representations of [brain activity] data is an immersive experience that can tap into this capacity of ours to recognise and interpret patterns (consider the online security feature that asks you to “select traffic lights in this image” – a challenge beyond most computers, but trivial for our brains)…[It] is almost impossible to watch and focus on both the time-varying [brain activity] data and the behavior video at the same time, our eyes will need to flick back and forth to see things that happen together. You generally need to continually replay clips over and over to be able to figure out what happened at a particular moment. Having an auditory representation of the data makes it much simpler to see (and hear) when things happen at the exact same time.”

  1. Audiovisualisation of neural activity from the dorsal surface of the thinned skull cortex of the awake mouse.
  2. Audiovisualisation of neural activity from the dorsal surface of the thinned skull cortex of the ketamine/xylazine anaesthetised mouse.
  3. Audiovisualisation of SCAPE microscopy data capturing calcium activity in apical dendrites in the awake mouse brain.
  4. Audiovisualisation of neural activity and blood flow from the dorsal surface of the thinned skull cortex of the awake mouse.

Video Credits: Thibodeaux et al., 2024, PLOS ONE, CC-BY 4.0

New Neural Prosthetic Device Can Help Restore Memory in Humans

Source: CC0

Scientists have demonstrated the first successful use of a neural prosthetic device to recall specific memories. The findings appear online in Frontiers in Computational Neuroscience.

This groundbreaking research was derived from a 2018 study led by Robert Hampson, PhD, professor of regenerative medicine, translational neuroscience and neurology at Wake Forest University School of Medicine. That study demonstrated the successful implementation of a prosthetic system that uses a person’s own memory patterns to facilitate the brain’s ability to encode and recall memory, improving recall by as much as 37%.

In the previous study, the team’s electronic prosthetic system was based on a multi-input multi-output (MIMO) nonlinear mathematical model, and the researchers influenced the firing patterns of multiple neurons in the hippocampus, a part of the brain involved in making new memories.

In this study, researchers from Wake Forest and University of Southern California (USC) built a new model of processes that assists the hippocampus in helping people remember specific information.

When the brain tries to store or recall information such as, “I turned off the stove” or “Where did I put my car keys?” groups of cells work together in neural ensembles that activate so that the information is stored or recalled.

Using recordings of the activity of these brain cells, the researchers created a memory decoding model (MDM) which let them decode what neural activity is used to store different pieces of specific information.

The neural activity decoded by the MDM was then used to create a pattern, or code, which was used to apply neurostimulation to the hippocampus when the brain was trying to store that information.

“Here, we not only highlight an innovative technique for neurostimulation to enhance memory, but we also demonstrate that stimulating memory isn’t just limited to a general approach but can also be applied to specific information that is critical to a person,” said Brent Roeder, Ph.D., a research fellow in the department of translational neuroscience at Wake Forest University School of Medicine and the study’s corresponding author.

The team enrolled 14 adults with epilepsy who were participating in a diagnostic brain-mapping procedure that used surgically implanted electrodes placed in various parts of the brain to pinpoint the origin of their seizures.

Participants underwent all surgical procedures, post-operative monitoring and neurocognitive testing at one of the three sites participating in this study including Atrium Health Wake Forest Baptist Medical Center, Keck Hospital of USC in Los Angeles and Rancho Los Amigo National Rehabilitation Center in Downey, California.

The team delivered MDM electrical stimulation during visual recognition memory tasks to see if the stimulation could help people remember images better.

They found that when they used this electrical stimulation, there were significant changes in how well people remembered things. In about 22% of cases, there was a noticeable difference in performance.

When they looked specifically at participants with impaired memory function, who were given the stimulation on both sides of their brain, almost 40% of them showed significant changes in memory performance.

“Our goal is to create an intervention that can restore memory function that’s lost because of Alzheimer’s disease, stroke or head injury,” Roeder said.

“We found the most pronounced change occurred in people who had impaired memory.”

Roeder said he hopes the technology can be refined to help people live independently by helping them recall critical information such as whether medication has been taken or whether a door is locked.

“While much more research is needed, we know that MDM-based stimulation has the potential to be used to significantly modify memory,” Roeder said.

Source: Atrium Health Wake Forest Baptist

Removing a Protein Lets Glioblastoma Chemo Remain Effective for Longer

Photo by Anna Shvets on Pexels

New research by the University of Sussex could help to increase life expectancy and improve treatment for glioblastoma. In the study, published in the Journal of Advanced Science, researchers have discovered that an understudied protein, called PANK4, is able to block cancer cells from responding to chemotherapeutic treatment for the highly intrusive brain cancer, glioblastoma.

Scientists at Sussex have demonstrated that if the protein is removed, cancer cells respond better to temozolomide, the main chemotherapy drug for the treatment of glioblastoma.

Prof Georgios Giamas, Professor of Cancer Cell Signalling at the University of Sussex explains: “Glioblastoma is a devastating brain cancer, and researchers are working hard to identify ways to delay progression of the disease, and tackle cell resistance to treatment. As this is the first time that PANK4 has been linked to glioblastoma, the next step is to develop a drug targeting this protein to try to reverse chemo-resistance and restore sensitivity, ensuring that patients receive the best treatment and have better outcomes.”

Glioblastoma is one of the most aggressive forms of brain cancer. Approximately 250 000 – 300 000 globally are diagnosed with it annually, with a best-case survival rate of just one to 18 months after diagnosis.

Following surgery to remove the tumour, glioblastoma patients are typically treated with radiation and the chemotherapeutic drug, temozolomide. Although patients initially respond well to the drug, the cancer cells quickly develop resistance to this treatment.

The University of Sussex scientists led an international research team to understand the possible reasons for this resistance, helping to guide future therapies to improve quality of life and increase life expectancy for those with glioblastoma.

The team identified a protein called PANK4 which, when removed from the cancer cells, can lead to the cell’s death, and saw patients better responding to temozolomide. Linked to this, the researchers found that patients expressing high levels of the PANK4 protein had lower survival rates.

Dr Viviana Vella, research fellow at the University of Sussex explains: “There are a multitude of under-investigated proteins that may hold great potential for therapeutic intervention. Our study sheds light on this understudied protein, PANK4, unveiling a protective role in temozolomide-resistant cancer cells. Ultimately, PANK4 depletion represents a vulnerability that can now be exploited to restore sensitivity to the drug and improve treatment.”

Source: University of Sussex

Visualising Multiple Sclerosis with a New MRI Procedure

This is a pseudo-colored image of high-resolution gradient-echo MRI scan of a fixed cerebral hemisphere from a person with multiple sclerosis. Credit: Govind Bhagavatheeshwaran, Daniel Reich, National Institute of Neurological Disorders and Stroke, National Institutes of Health

A key feature of multiple sclerosis (MS) is that it causes the patient’s own immune system to attack and destroy the myelin sheaths in the central nervous system. To date, it hasn’t been possible to visualise the myelin sheaths well enough to use this information for the diagnosis and monitoring of MS.  Now researchers have developed a new magnetic resonance imaging (MRI) procedure that maps the condition of the myelin sheaths more accurately than was previously possible.

The researchers successfully tested the procedure on healthy people for the first time, and published their results in Magnetic Resonance in Medicine.

In the future, the MRI system with its special head scanner could help doctors to recognise MS at an early stage and better monitor the progression of the disease.

This technology, developed by the researchers at ETH Zurich and University of Zurich, led by Markus Weiger and Emily Baadsvik from the Institute for Biomedical Engineering, could also facilitate the development of new drugs for MS. But it doesn’t end there: the new MRI method could also be used by researchers to better visualise other solid tissue types such as connective tissue, tendons and ligaments.

Quantitative myelin maps

Conventional MRI devices capture only inaccurate, indirect images of the myelin sheaths because these devices typically work by reacting to water molecules in the body that have been stimulated by radio waves in a strong magnetic field.

But the myelin sheaths, which wrap around the nerve fibres in several layers, consist mainly of fatty tissue and proteins. That said, there is some water – known as myelin water – trapped between these layers.

Standard MRIs build their images primarily using the signals of the hydrogen atoms in this myelin water, rather than imaging the myelin sheaths directly.

The ETH researchers’ new MRI method solves this problem and measures the myelin content directly.

It puts numerical values on MRI images of the brain to show how much myelin is present in a particular area compared to other areas of the image.

A number 8, for instance, means that the myelin content at this point is only 8 percent of a maximum value of 100, which indicates a significant thinning of the myelin sheaths.

Essentially, the darker the area and the smaller the number in the image, the more the myelin sheaths have been reduced.

This information ought to enable doctors to better assess the severity and progression of MS.

Measuring signals within millionths of a second

It is difficult however to image the myelin sheaths directly, since the signals that the MRI triggers in the tissue are very short-lived; the signals that emanate from the myelin water last much longer.

“Put simply, the hydrogen atoms in myelin tissue move less freely than those in myelin water. That means they generate much briefer signals, which disappear again after a few microseconds,” Weiger says, adding: “And bearing in mind a microsecond is a millionth of a second, that’s a very short time indeed.” A conventional MRI scanner can’t capture these fleeting signals because it doesn’t take the measurements fast enough.

To solve this problem, the researchers used a specially customised MRI head scanner that they have developed over the past ten years together with the companies Philips and Futura.

This scanner is characterised by a particularly strong gradient in the magnetic field.

“The greater the change in magnetic field strength generated by the three scanner coils, the faster information about the position of hydrogen atoms can be recorded,” Baadsvik says.

Generating such a strong gradient calls for a strong current and a sophisticated design.

As the researchers scan only the head, the magnetic field is more contained and concentrated than with conventional devices.

In addition, the system can quickly switch from transmitting radio waves to receiving signals; the researchers and their industry partners have developed a special circuit for this purpose.

The researchers have already successfully tested their MRI procedure on tissue samples from MS patients and on two healthy individuals. Next, they want to test it on MS patients themselves. Whether the new MRI head scanner will make its way into hospitals in the future now depends on the medical industry. “We’ve shown that our process works,” Weiger says. “Now it’s up to industry partners to implement it and bring it to market.”

Source: ETH Zurich

Focused Ultrasound can Shut Down Pain Centre in Brain

Source: CC0

A new method has been developed that could non-invasively ease pain, avoiding the side effects of pain medication and the addiction problems associated with current opioid pain relievers.

This new study by Wynn Legon, assistant professor at the Fralin Biomedical Research Institute at Virginia Tech, and his team targets the insula, the location for pain reception deep within the brain. Their study, published in the journal PAIN, found that soundwaves from low-intensity focused ultrasound aimed at this spot can reduce both the perception of pain and other effects of pain, such as heart rate changes.

“This is a proof-of-principle study,” Legon said. “Can we get the focused ultrasound energy to that part of the brain, and does it do anything? Does it change the body’s reaction to a painful stimulus to reduce your perception of pain?”

Unlike ultrasound scans, focused ultrasound delivers a narrow band of sound waves to a tiny point. At high intensity, ultrasound can ablate tissue. At low-intensity, it can cause gentler, transient biological effects, such as altering nerve cell electrical activity

Neuroscientists have long studied how non-surgical techniques, such as transcranial magnetic stimulation, might be used to treat depression and other issues. Legon’s study, however, is the first to target the insula and show that focused ultrasound can reach deep into the brain to ease pain.

The study involved 23 healthy human participants. Heat was applied to the backs of their hands to induce pain. At the same time, they wore a device that delivered focused ultrasound waves to a spot in their brain guided by magnetic resonance imaging (MRI).

Participants rated their pain perception in each application on a scale of zero to nine. Participants reported an average reduction in pain of three-fourths of a point.

“That might seem like a small amount, but once you get to a full point, it verges on being clinically meaningful,” said Legon, also an assistant professor in the School of Neuroscience in Virginia Tech’s College of Science.

“It could make a significant difference in quality of life, or being able to manage chronic pain with over-the-counter medicines instead of prescription opioids.”

Researchers also monitored each participant’s heart rate and heart rate variability as a means to discern how ultrasound to the brain also affects the body’s reaction to a painful stimulus.

The study also found the ultrasound application reduced physical responses to the stress of pain – heart rate and heart rate variability, which are associated with better overall health.

“Your heart is not a metronome. The time between your heart beats is irregular, and that’s a good thing,” Legon said.

“Increasing the body’s ability to deal with and respond to pain may be an important means of reducing disease burden.”

The effect of focused ultrasound on those factors suggests a future direction for the Legon lab’s research – to explore the heart-brain axis, or how the heart and brain influence each other, and whether pain can be mitigated by reducing its cardiovascular stress effects.

Source: Virginia Tech

Strongest Evidence Yet of Brain’s Compensation for Cognitive Decline in Aging

Image: Pixabay CC0

Scientists have found the strongest evidence yet that our brains can compensate for age-related deterioration by recruiting other areas to help with brain function and maintain cognitive performance.

As we age, our brain gradually atrophies, losing nerve cells and connections and this can lead to a decline in brain function. It’s not fully understood why some people appear to maintain better brain function than others, and how we can protect ourselves from cognitive decline.

A widely accepted notion is that some people’s brains are able to compensate for the deterioration in brain tissue by recruiting other areas of the brain to help perform tasks. While brain imaging studies have shown that the brain does recruit other areas, until now it has not been clear whether this makes any difference to performance on a task, or whether it provides any additional information about how to perform that task.

In a study published in the journal eLife, a team led by scientists at the University of Cambridge in collaboration with the University of Sussex have shown that when the brain recruits other areas, it improves performance specifically in the brains of older people.

Study lead Dr Kamen Tsvetanov, an Alzheimer’s Society Dementia Research Leader Fellow in the Department of Clinical Neurosciences, University of Cambridge, said: “Our ability to solve abstract problems is a sign of so-called ‘fluid intelligence’, but as we get older, this ability begins to show significant decline. Some people manage to maintain this ability better than others. We wanted to ask why that was the case – are they able to recruit other areas of the brain to overcome changes in the brain that would otherwise be detrimental?”

Brain imaging studies have shown that fluid intelligence tasks engage the ‘multiple demand network’ (MDN), a brain network involving regions both at the front and rear of the brain, but its activity decreases with age. To see whether the brain compensated for this decrease in activity, the Cambridge team looked at imaging data from 223 adults between 19 and 87 years of age who had been recruited by the Cambridge Centre for Ageing & Neuroscience (Cam-CAN).

The volunteers were asked to identify the odd-one-out in a series of puzzles of varying difficulty while lying in a functional magnetic resonance imaging (fMRI) scanner, so that the researchers could look at patterns of brain activity by measuring changes in blood flow.

As anticipated, in general the ability to solve the problems decreased with age. The MDN was particularly active, as were regions of the brain involved in processing visual information.

When the team analysed the images further using machine-learning, they found two areas of the brain that showed greater activity in the brains of older people, and also correlated with better performance on the task. These areas were the cuneus, at the rear of the brain, and a region in the frontal cortex. But of the two, only activity in the cuneus region was related to performance of the task more strongly in the older than younger volunteers, and contained extra information about the task beyond the MDN.

Although it is not clear exactly why the cuneus should be recruited for this task, the researchers point out that this brain region is usually good at helping us stay focused on what we see. Older adults often have a harder time briefly remembering information that they have just seen, like the complex puzzle pieces used in the task. The increased activity in the cuneus might reflect a change in how often older adults look at these pieces, as a strategy to make up for their poorer visual memory.

Dr Ethan Knights from the Medical Research Council Cognition and Brain Sciences Unit at Cambridge said: “Now that we’ve seen this compensation happening, we can start to ask questions about why it happens for some older people, but not others, and in some tasks, but not others. Is there something special about these people – their education or lifestyle, for example – and if so, is there a way we can intervene to help others see similar benefits?”

Dr Alexa Morcom from the University of Sussex’s School of Psychology and Sussex Neuroscience research centre said: “This new finding also hints that compensation in later life does not rely on the multiple demand network as previously assumed, but recruits areas whose function is preserved in ageing.”

The original text of this story is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Source: University of Cambridge

fMRI in World’s Largest Childhood Trauma Study Reveals Brain Rewiring

Photo by Caleb Woods on Unsplash

The world’s largest brain study of childhood trauma has revealed how it affects development and rewires vital pathways. The University of Essex study, published in Biological Psychiatry Cognitive Neuroscience and Neuroimaging, uncovered a disruption in neural networks involved in self-focus and problem-solving.

This means under-18s who experienced abuse will likely struggle with emotions, empathy and understanding their bodies. Difficulties in school caused by memory, hard mental tasks and decision making may also emerge.

The cutting-edge research, led by the Department of Psychology’s Dr Megan Klabunde, used AI to re-examine hundreds of brain scans and identify patterns. It is hoped the research will help hone new treatments for children who have endured mistreatment. This could mean therapists focus on techniques that rewire these centres and rebuild their sense of self.

Dr Klabunde said: “Currently, science-based treatments for childhood trauma primarily focus on addressing the fearful thoughts and avoidance of trauma triggers.

“This is a very important part of trauma treatment. However, our study has revealed that we are only treating one part of the problem.

“Even when a child who has experienced trauma is not thinking about their traumatic experiences, their brains are struggling to process their sensations within their bodies.

“This influences how one thinks and feels about one’s ‘internal world’ and this also influences one’s ability to empathise and form relationships.”

Dr Klabunde reviewed 14 studies involving more than 580 children for the research. The paper re-examined functional magnetic resonance imaging (fMRI) scans. This procedure highlights blood flow in different centres, showing neurological activity.

The study discovered a marked difference in traumatised children’s default mode (DMN) and central executive networks (CEN) – two large scale brain systems.

The DMN and the posterior insula are involved in how people sense their body, the sense of self and their internal reflections.

New studies are finding the DMN plays an important role in most mental health problems — and may be influenced by experiencing childhood trauma.

The CEN is also more active than in healthy children, which means that children with trauma histories tend to ruminate and relive terrible experiences when triggered.

Dr Klabunde hopes this study will be a springboard to find out more about how trauma affects developing minds.

She said: “Our brain findings indicate that childhood trauma treatments appear to be missing an important piece of the puzzle.

“In addition to preventing avoidance of scary situations and addressing one’s thoughts, trauma therapies in children should also address how trauma’s impacts on one’s body, sense of self, emotional/empathetic processing, and relationships.

“This is important to do so since untreated symptoms will likely contribute to other health and mental health problems throughout the lifespan.”

Dr Klabunde worked with Dr Anna Hughes, also from the Department of Psychology, and Masters student Rebecca Ireton on the study.

Source: University of Essex

Polycystic Ovary Syndrome Tied to Cognitive Problems

Photo by Sora Shimazaki on Pexels

Those with polycystic ovary syndrome (PCOS) may be more likely to have memory and thinking problems in middle age, according to a study involving over 900 women, 66 of whom had PCOS. The study, published in Neurology, followed the women for 30 years.

PCOS is a hormonal disorder that is defined by irregular menstruation and elevated levels of androgen. Other symptoms may include excess hair growth, acne, infertility and poor metabolic health.

“Polycystic ovary syndrome is a common reproductive disorder that impacts up to 10% of women,” said study author Heather G. Huddleston, MD, of the University of California, San Francisco.

“While it has been linked to metabolic diseases like obesity and diabetes that can lead to heart problems, less is known about how this condition affects brain health. Our results suggest that people with this condition have lower memory and thinking skills and subtle brain changes at midlife. This could impact a person on many levels, including quality of life, career success and financial security.”

The study involved 907 female participants who were 18 to 30 years old at the start of the study.

They were followed for 30 years, at which time they completed tests to measure memory, verbal abilities, processing speed and attention. At the time of testing, 66 participants had polycystic ovary syndrome.

In a test measuring attention, participants looked at a list of words in different colours and were asked to state the colour of the ink rather than read the actual word. For example, the word “blue” could be displayed in red, so the correct response would be red.

Researchers found for this test, people with PCOS had an average score that was approximately 11% lower compared to people without the condition.

After adjusting for age, race and education, researchers found that people with polycystic ovary syndrome had lower scores on three of the five tests that were given, specifically in areas of memory, attention and verbal abilities, when compared to those without this condition.

At years 25 and 30 of the study, a smaller group of 291 participants had brain scans.

Of those, 25 had PCOS. With the scans, researchers looked at the integrity of the white matter pathways in the brain by looking at movement of water molecules in the brain tissue.

Researchers found that people with PCOS had lower white matter integrity, which may indicate early evidence of brain aging.

“Additional research is needed to confirm these findings and to determine how this change occurs, including looking at changes that people can make to reduce their chances of thinking and memory problems,” Huddleston said.

“Making changes like incorporating more cardiovascular exercise and improving mental health may serve to also improve brain aging for this population.”

A limitation of the study was that PCOS diagnosis was not made by a doctor but was based on androgen levels and self-reported symptoms, so participants may not have remembered all the information accurately.

The study was funded by the University of California, San Francisco.

Source: American Academy of Neurology 

The Neural Circuits that Manage the Balancing Act of Hydration

Credit: Pixabay CC0

The human brain regulates water and salt appetite to maintain proper hydration. A new study published in Cell Reports reveals how the brain’s centre for digestive signals has two distinct neuronal populations that regulate either salt or water intake.

Previous studies suggested that water or salt ingestion quickly suppresses thirst and salt appetite before the digestive system absorbs the ingested substances, indicating the presence of sensing and feedback mechanisms in digestive organs that help real-time thirst and salt appetite modulation in response to drinking and feeding. Unfortunately, despite extensive research on this subject, the details of these underlying mechanisms remained elusive.

To shed light on this matter, a research team from Japan has recently conducted an in-depth study on the parabrachial nucleus (PBN), the brain’s relay centre for ingestion signals coming from digestive organs.

The researchers conducted a series of in vivo experiments using genetically engineered mice.

They introduced optogenetic (and chemogenetic) modifications and in vivo calcium imaging techniques into these mice, enabling them to visualise and control the activation or inhibition of specific neurons in the lateral PBN (LPBN) using light (and chemicals). During the experiments, the researchers offered the mice, either in regular or water- or salt-depleted conditions, water and/or salt water, and monitored neural activities along with the corresponding drinking behaviours.

In this way, the team identified two distinct subpopulations of cholecystokinin mRNA-positive neurons in the LPBN, which underwent activation during water and salt intake.

The neuronal population that responds to water intake projects from the LPBN to the median preoptic nucleus (MnPO), whereas the one that responds to salt intake projects to the ventral bed nucleus of the stria terminalis (vBNST). Interestingly, if the researchers artificially activated these neuronal populations through optogenetic (genetic control using light) experiments, the mice drank substantially less water and ingested less salt, even if they were previously water- or salt-deprived.

Similarly, when the researchers chemically inhibited these neurons, the mice consumed more water and salt than usual.

Therefore, these neuronal populations in the LPBN are involved in feedback mechanisms that reduce thirst and salt appetite upon water or salt ingestion, possibly helping prevent excessive water or salt intake.

These results, alongside their previous neurological studies, also reveal that MnPO and vBNST are the control centres for thirst and salt appetite, integrating promotion and suppression signals from several other brain regions.

“Understanding brain mechanisms controlling water and salt intake behaviours is not only a significant discovery in the fields of neuroscience and physiology, but also contributes valuable insights to understand the mechanisms underlying diseases induced by excessive water and salt intake, such as water intoxication, polydipsia, and salt-sensitive hypertension,” remarks first author, Assistant Professor Takashi Matsuda from Tokyo Institute of Technology.

Source: Tokyo Institute of Technology

Researchers Shine a Light on the Mechanism Behind Guillain-​Barré Syndrome

Source: CC0

Patients with Guillain-​Barré syndrome (GBS) face a rare and heterogeneous disorder of the peripheral nervous system that is often triggered by preceding infections and causes severe muscle weakness. In Europe and the USA, around 1 to 2 cases per 100 000 people occur every year.

Although GBS is considered an autoimmune disease, the underlying mechanisms remain largely unknown, making an accurate diagnosis and effective treatment a challenge.

A recent study published in the journal Nature, has revealed a pivotal aspect of GBS pathophysiology.

The work, led by Daniela Latorre, an SNSF PRIMA group leader at the Institute of Microbiology at ETH Zurich, investigated autoimmune factors that are potentially responsible for this illness in close collaboration with clinical scientists at the University Hospital Zurich and the Neurocenter of Southern Switzerland (EOC) in Lugano.

GBS usually begins with weakness and tingling in the legs, which can then spread to the arms and upper body, making it difficult to walk or move. In severe cases, paralysis can affect respiration.

Autoreactive T cells target peripheral nerves

By employing sensitive experimental approaches, Latorre’ s group was able to reveal that in GBS patients, specific cells of the immune system known as T lymphocytes invade the nerve tissue and target the insulating covering of nerve fibres called myelin.

Normally, T lymphocytes play a vital role in our immune system by identifying and eliminating threats like infections and abnormal cells.

However, in rare cases, they can mistakenly attack the body’s own tissues, leading to autoimmune diseases.

“We found that these autoreactive T lymphocytes were exclusive to patients with a type of GBS characterised by nerve demyelination and showed a specific disease-associated signature, distinguishing them from healthy individuals,” Latorre explains.

These findings mark the first evidence of the contribution of autoreactive T lymphocytes to the disease in humans.

Furthermore, the researchers identified T lymphocytes reactive to both self-antigens of peripheral nerves (myelin) and viral antigens in a subset of post-viral GBS patients, supporting a direct link between disease development and triggers of a preceding infection.

Current treatments are effective for many GBS patients, but they lack specificity, and around 20% of patients remain severely disabled or die. Overall, the work of the research team offers novel insights into our understanding of GBS, opening avenues for further investigations on larger patient groups to decipher immune mechanisms in different GBS variants. This new knowledge could lead to targeted therapies for specific GBS subtypes, potentially improving patient care.

Source: ETH Zurich