Tag: intermittent fasting

Intermittent Fasting May Aid Nerve Repair

A healthy neuron.
A healthy neuron. Credit: NIH

A new mouse study published in Nature showed that intermittent fasting changes gut bacteria, and increases the ability to recover from nerve damage. The fasting led to gut bacteria increasing production of 3-Indolepropionic acid (IPA), a metabolite which is required for regenerating axons.

The bacteria that produces IPA, Clostridium sporogenesis, is found naturally in the guts of humans as well as mice and IPA is found in human bloodstreams too, the researchers said. 

“There is currently no treatment for people with nerve damage beyond surgical reconstruction, which is only effective in a small percentage of cases, prompting us to investigate whether changes in lifestyle could aid recovery,” said study author Professor Simone Di Giovanni at Imperial College London.

“Intermittent fasting has previously been linked by other studies to wound repair and the growth of new neurons – but our study is the first to explain exactly how fasting might help heal nerves.”

The study assessed nerve regeneration of mice where the sciatic nerve, the longest nerve running from the spine down the leg, was crushed. Half of the mice underwent intermittent fasting (one day with food, one day without), while the other half ate freely. These diets continued for a period of 10 days or 30 days before their operation, and the mice’s recovery was monitored 24 to 72 hours after the nerve was severed. The regrown axons were about 50% greater in mice that had been fasting.

Prof Di Giovanni said, “I think the power of this is that opens up a whole new field where we have to wonder: is this the tip of an iceberg? Are there going to be other bacteria or bacteria metabolites that can promote repair?”

The researchers also studied how fasting led to this nerve regeneration. They found that there were significantly higher levels of specific metabolites, including IPA, in the blood of diet-restricted mice.

To confirm whether IPA led to nerve repair, the mice were treated with antibiotics to remove gut bacteria. They were then given gene-edited of Clostridium sporogenesis that could or could not produce IPA.

“When IPA cannot be produced by these bacteria and it was almost absent in the serum, regeneration was impaired. This suggests that the IPA generated by these bacteria has an ability to heal and regenerate damaged nerves,” Prof Di Giovanni said. 

Importantly, when IPA was administered to the mice orally after a sciatic nerve injury, regeneration and increased recovery was observed between two and three weeks after injury.

The next step is investigating spinal cord injuries in mice, along with seeing if more frequent IPA administrations increase its efficacy.

“One of our goals now is to systematically investigate the role of bacteria metabolite therapy.” Prof Di Giovanni said.

More studies will need to investigate whether IPA increases after fasting in humans and the efficacy of IPA and intermittent fasting as a potential treatment in people.

He said: “One of the questions that we haven’t explored fully is that, since IPA lasts in blood for four to six hours in high concentration, would administering it repeatedly throughout the day or adding it to a normal diet help maximise its therapeutic effects?”

Source: Imperial College

Intermittent Fasting Triggers an Anti-inflammatory Response

Credit: Intermountain Healthcare

Intermittent fasting may not only be a hot dieting trend, but it also has broader health benefits, including helping to fight inflammation, according to a new study. The new research shows that intermittent fasting raises the levels of galectin-3, a protein tied to inflammatory response.

Intermittent fasting has previously been shown to possibly improve health markers not related to weight. 

“Inflammation is associated with higher risk of developing multiple chronic diseases, including diabetes and heart disease. We’re encouraged to see evidence that intermittent fasting is prompting the body to fight inflammation and lowering those risks,” said Benjamin Horne, PhD, principal investigator of the study and director of cardiovascular and genetic epidemiology at the Intermountain Healthcare Heart Institute.

The findings of the study were presented at the American Heart Association’s Scientific Sessions 2021.

These results form part of Intermountain’s WONDERFUL Trial which is studying intermittent fasting. It found that intermittent fasting causes drops in metabolic syndrome score (MSS) and insulin resistance.  

This particular study followed 67 patients aged 21 to 70 who all had at least one metabolic syndrome feature or type 2 diabetes, and were also not taking anti-diabetic or statin medication, and had raised LDL cholesterol levels.

Of the 67 patients studied, 36 were prescribed an intermittent fasting schedule: twice a week water-only 24-hour fasting for four weeks, then once a week water-only 24 hour-fasting for 22 weeks. Fasts could not be done on consecutive days. The remaining 31 participants continued their routines.

After 26 weeks, participants’ galectin-3 was measured, and found to be higher in the intermittent fasting group. Lower rates of HOMA-IR (insulin resistance) and MSS (metabolic syndrome) were found, which researchers believe may be similar to the reported effects of SGLT-2 inhibitors.

“In finding higher levels of galectin-3 in patients who fasted, these results provide an interesting mechanism potentially involved in helping reduce the risk of heart failure and diabetes,” said Dr Horne, who added that a few members of the trial team completed the same regime before the study started to make sure that it was doable and not overly onerous for participants.

“Unlike some IF diet plans that are incredibly restrictive and promise magic weight loss, this isn’t a drastic form of fasting. The best routine is one that patients can stick to over the long term, and this study shows that even occasional fasting can have positive health effects,” he added.

Source: EurekAlert!