Tag: concussion

Blows to the Brain: The Hidden Crisis in Rugby and Other Contact Sport

Diffusion tensor imaging shows corpus callosum fibre tracts in two adolescents: One with traumatic brain injury (TBI; G and H) and one with an orthopaedic injury (E and F). At 3 months post-injury (E, G), early degeneration and loss of fibre tracts are visible, especially in the TBI case. At 18 months (F, H), some recovery or reorganisation occurs, but persistent loss and thinning of tracts remain, particularly in the frontal regions, indicating lasting white matter damage after TBI.

By Kathy Malherbe

A silent but devastating brain disease is casting a shadow over contact and collision sports, particularly rugby. Traumatic Brain injuries (TBIs) as a result of an impact to the head, cause a disruption in the normal function of the brain. Repeated TBIs are linked to an increased risk of neurodegenerative diseases like early-onset dementia which has the highest prevalence and is the most concerning. Others include Parkinson’s disease, Alzheimer’s and Chronic Traumatic Encephalopathy, better known as CTE.       

How head injuries happen

Dr Hofmeyr Viljoen, radiologist at SCP Radiology, says that there are several types of head injuries common in rugby. ‘The most frequent being TBIs which occur when the impact and sudden movement results in the brain shifting rotationally, sideways or backwards and forwards within the skull. This stretching and elongation causes damage to nerve fibres as well as blood vessels. Surprisingly, a direct blow isn’t always necessary. Rapid acceleration and deceleration, such as during a tackle or fall, can also result in an injury. More severe head injuries may include skull fractures, bruising or bleeding around the brain, all of which require urgent diagnosis and intervention.’

Riaan van Tonder, a sports physician with a special interest in sports-related concussion and radiology registrar at Stellenbosch University, explains that concussions and, even more so, repetitive sub-concussive impacts, result in a cascade of changes at a cellular level, gradually damaging the nervous system.

Although rugby is notorious for heavy tackles and collisions, it took a lawsuit to prompt more widespread awareness. A class-action suit filed in the High Court in London, by former union and league players, accused World Rugby of failing to implement adequate rules to assess, diagnose and manage concussions. Steve Thompson’s, the legendary English hookers, early onset dementia has been one of the sports’ biggest talking points. He was diagnosed in 2020 with this neurodegenerative disease, purportedly as a result of repeated trauma to the brain. The claimants argue that the governing bodies were negligent and that their neurological problems stem from years of unmanaged head injuries. The outcome of this case to be heard in 2025, could significantly reshape the legal and medical responsibilities of sports organisations globally.

What is Chronic Traumatic Encephalopathy (CTE)

CTE is a progressive neurodegenerative condition strongly linked to repeated head impacts. It has been implicated in memory loss, mood disturbances, psychosis and, in many cases, premature death. It can only be diagnosed after death at autopsy, where researchers examine brain tissue for abnormal protein deposits and signs of widespread degeneration. Despite this limitation, mounting evidence is forcing sports organisations, including rugby authorities, to confront uncomfortable truths about how repeated head trauma can alter lives permanently.

Uncovering the extent of the problem

In 2023, the Boston University CTE Centre released updated autopsy findings from its brain bank. Of 376 former NFL player’s brains studied post-mortem, 345 had been diagnosed with CTE, a staggering 91.7%. While brain banks are inherently subject to selection bias, the results remain alarming. For comparison, a 2018 study of 164 randomly selected brains revealed just one case of CTE.

This brain disease isn’t new. Its earliest descriptions date back to Dr Harrison Martland in 1928, who studied post-mortem findings in boxers and coined the term ‘punch drunk’ to describe their confusion, tremors and cognitive decline. What was once confined to boxing is now known to affect athletes in rugby, football, ice hockey and even military personnel exposed to repeated blast injuries.

Radiology’s role in determining head injuries

Although Computed Tomography (CT) scans are not designed to specifically diagnose concussions, they are crucial to imaging patients with severe concussion or atypical symptoms. ‘CT scans rapidly detect serious issues like fractures, brain swelling and bleeding, providing crucial information for urgent treatment decisions,’ explains Dr Viljoen.

‘Magnetic Resonance Imaging (MRI) is used particularly when concussion symptoms persist or worsen. It excels in identifying subtle injuries, such as microbleeds and brain swelling that may have been missed by CT scans,’ he says.

‘CTE is challenging because currently, it can only be definitively diagnosed after death,’ he explains. ‘However, ongoing research aims to develop methods to detect CTE in living patients, potentially using advanced imaging techniques like Positron Emission Tomography (PET).’ Most research is focused on advancing non-invasive methods to see what is happening inside the brain of a living person and to track it over time.

Advanced imaging methods

Emerging imaging techniques, such as Diffusion Tensor Imaging (DTI), show promise for better understanding and management of head injuries, especially the subtle effects of concussions. ‘DTI helps identify damage to the brain’s white matter, potentially guiding return-to-play decisions and treatment strategies,’ notes Dr Viljoen.

The biomechanics of brain trauma

Former NFL player and biomechanical engineer, David Camarillo, explains in a TED talk that helmets, although effective at preventing skull fractures, do little to stop biomechanical forces from affecting the brain inside the skull.

Camarillo highlights that concussions and the stretching of nerve fibres are more likely to affect the middle of the brain, the corpus callosum, the thick band that facilitates communication between the left and right brain hemispheres. ’It’s not just bruising,’ he says, ‘we’re talking about dying brain tissue.’

Smart mouthguard technology in rugby

‘Presently,’ says Van Tonder, ‘smart mouthguards are mandatory at elite level. These custom-fitted mouthguards contain accelerometers and gyroscopes that detect straight and rotational forces on the head. Data is transmitted live to medical teams at a rate of 1 000 samples per second.

‘If a threshold is exceeded, an alert is triggered, prompting an immediate Head Injury Assessment (HIA1). Crucially, the system can identify dangerous impacts, even when no symptoms or video evidence is apparent. This is an essential shift in concussion management,’ says van Tonder. ‘It allows proactive assessments rather than waiting for visible signs.’ World Rugby has committed €2 million to assist teams in adopting this technology and integrating it into HIA1.

Brain Health Service

The really good news is that in March this year, World Rugby and SA Rugby launched a new Brain Health Service to support former elite South African players. It’s the first of its kind in the world and South Africa is the fourth nation to establish this system that supports players to understand how they can optimise management of their long-term brain health. It includes an awareness and education component, an online questionnaire and tele-health delivered cognitive assessment with a trained brain health practitioner. This service assesses players for any brain health warning signs, provides a baseline result, advice on managing risk factors and signposts anyone in need of specialist care.

Super Rugby and smart mouthguards

Super Rugby has revised its smart mouthguard policy, no longer requiring players to leave the field immediately for a HIA when an alert is triggered. The change follows criticism from players and coaches, including Crusaders captain Scott Barrett, who argued the rule could unfairly affect match outcomes. Players must still wear the devices but on-field doctors will assess them first; full HIAs will be conducted at half-time or full-time, if necessary. Further trials are planned to improve the system before reinstating immediate alerts.

Where to from here?

Researchers continue to explore ways to reduce brain movement inside the skull during collisions. One innovative idea includes an airbag neck collar for cyclists, which inflates around the head upon impact. It’s closer to the goal of reducing the brain’s movement – and therefore the risk of concussion. However, regulatory hesitation remains a barrier, with no formal cycling helmet approval process currently in place.

The evidence linking repetitive head impacts to long-term brain degeneration is too compelling to ignore. Rugby, like other contact sports, must continue evolving its protocols, technology and player education to protect athletes at all levels … starting at schools.

While innovations such as smart mouthguards mark significant progress, much remains to be done: From regulatory reform to changing the sporting culture that once downplayed the severity of concussion. Van Tonder notes, ‘We’re behind, but it’s not too late to catch up.’

In rugby, the HIA protocol now consists of three stages:

HIA1: Immediate, sideline assessment during the match.

HIA2: Same-day evaluation within three hours post-match.

HIA3: A more detailed follow-up, typically done 36-48 hours later.

Heads up – School Rugby and Head Injuries Explained

The rugby season is kicking off in schools across South Africa and players, parents, coaches and referees are preparing for exciting, yet physically demanding matches. In many sports, injuries are an unfortunate, common occurrence. Rugby, inherently a contact sport, also carries the inevitable risk of head injuries, ranging from minor concussions to severe Traumatic Brain Injuries (TBIs).

The importance of early detection

The early detection of head injuries is essential for effective treatment and preventing further complications. In many cases, the symptoms of a concussion or TBIs may not be immediately apparent and athletes may continue playing which can lead to further damage.

Accurate diagnosis and management of head injuries require a combination of clinical evaluation and advanced imaging techniques. Dr Hofmeyr Viljoen, radiologist at SCP Radiology talks about the nature of these injuries, the critical role radiology plays in diagnosing and managing them and what preventative measures can be taken.

Understanding head injuries in rugby

Dr Viljoen explains that there are several types of head injuries common in rugby. ‘The most frequent is concussion, a mild traumatic brain injury occurring when the brain is jolted inside the skull from an impact or violent movement. Concussions can be mild or lead to significant short and long-term issues. Occasionally, with more severe injuries we see skull fractures, contusions and haemorrhage surrounding the brain. These require urgent diagnosis and management.’

Recognising the symptoms

He emphasises awareness of concussion symptoms, including headaches, dizziness, nausea, confusion, memory problems, sensitivity to light and difficulty concentrating. ‘Immediate recognition is vital,’ he explains. ‘A player with any of these symptoms must be removed from play immediately to prevent further injury.’

The role of radiology

Radiology plays an essential part in accurately diagnosing the extent of head injuries. According to Dr Viljoen, Computed Tomography (CT) scans are always the first imaging method used in emergency settings. Although patients with concussion typically do not have significant imaging findings, it is crucial to image those patients with severe concussion or atypical symptoms. ‘CT scans rapidly detect serious issues like fractures, brain swelling and bleeding, providing crucial information for urgent treatment decisions,’ he explains.

Magnetic Resonance Imaging (MRI) is used in situations requiring more detailed evaluation, particularly when concussion symptoms persist or worsen. ‘MRI excels in identifying subtle injuries, such as microbleeds and brain swelling, often missed by CT scans,’ says Dr Viljoen. Unlike CT scans, MRI does not use radiation, making it a safer option for repeated assessments over time.

Advanced imaging methods

Emerging imaging techniques, such as Diffusion Tensor Imaging (DTI), show promise for better understanding and management of head injuries, especially the subtle effects of concussions. ‘DTI helps identify damage to the brain’s white matter, potentially guiding return-to-play decisions and treatment strategies,’ notes Dr Viljoen.

Understanding possible complications – Second Impact Syndrome (SIS)

SIS is a rare but extremely serious condition that occurs when a person sustains a second concussion before fully recovering from an initial concussion. This second injury doesn’t have to be severe to trigger SIS – it can even be minor – but it causes rapid and severe brain swelling (cerebral oedema).

The brain’s ability to regulate its blood flow and pressure is compromised following the initial concussion, making it vulnerable to catastrophic swelling after a subsequent impact. Symptoms can escalate quickly, often within minutes, including loss of consciousness, severe headache, dilated pupils, respiratory failure and even death. Young athletes are especially vulnerable to SIS. Due to its rapid progression and severity, SIS is considered a medical emergency requiring immediate intervention.

Preventing SIS involves strictly adhering to concussion management protocols, ensuring full recovery after any head injury and carefully monitoring symptoms before returning to sports or high-risk activities.

Addressing Chronic Traumatic Encephalopathy (CTE)

Dr Viljoen says CTE is a long-term degenerative brain condition linked to repeated head impacts. ‘CTE is challenging because currently, it can only be definitively diagnosed after death.  However, ongoing research aims to develop methods to detect CTE in living patients, potentially using advanced imaging techniques like Positron Emission Tomography (PET).’ Most research is focused on advancing non-invasive methods to see what is happening inside the brain of a living person and to track it over time.

Common causes of head injuries in rugby

  • These primarily arise from the high-impact nature of the sport, with tackling identified as a significant risk factor. Tackling, particularly when performed incorrectly or at a dangerous height, frequently leads to head trauma. Young players are especially vulnerable as their tackling techniques may not yet be fully developed, increasing the likelihood of injury. Teaching safe and correct tackling methods early is a way to mitigate these risks
  • Rugby’s dynamic gameplay often results in players being brought down forcefully or falling awkwardly. Even with protective gear, the impact of the head striking the playing surface can lead to concussions or more severe trauma
  • Due to the speed and intensity of the game, unintended impacts between players are inevitable. These include clashes of heads or impacts from knees and elbows, which can result in injuries ranging from mild concussions to more severe brain injuries. Preventative strategies and safer playing practices can reduce these risks

Prevention remains critical

Dr Viljoen emphasises the importance of proper training: ‘Educating young players on safe tackling techniques and enforcing protective protocols significantly reduces injury risks. Protective gear like headguards can minimise superficial injuries, though it does not prevent concussions.’

He also stresses the importance of concussion protocols. ‘Coaches at schools and clubs must rigorously apply concussion management strategies, ensuring players are adequately assessed and cleared by medical professionals before returning to the field.’ Under-reporting in schoolboy ruby often occurs because the player either wants to stay in the game and/or doesn’t recognise the symptoms of concussion.

Dr Viljoen concludes, ‘Rugby is a fantastic sport for building teamwork and resilience but player safety must always come first. Through awareness, timely medical intervention and proper preventative strategies, we can significantly reduce the risk and severity of head injuries, allowing young athletes to safely enjoy the game they love.’

Concussions from American Football Slow Brain Activity of High Schoolers

Photo by Jakob Rosen on Unsplash

A new study of high school American football players found that concussions affect an often-overlooked but important brain signal. The findings are presented at the annual meeting of the Radiological Society of North America (RSNA).

Reports have emerged in recent years warning about the potential harms of youth contact sports on developing brains. Contact sports, including high school football, carry a risk of concussion. Symptoms of concussion commonly include cognitive disturbances, such as difficulty with balancing, memory or concentration.

Many concussion studies focus on periodic brain signals. These signals appear in rhythmic patterns and contribute to brain functions such as attention, movement or sensory processing. Not much is known about how concussions affect other aspects of brain function, specifically, brain signals that are not rhythmic.

“Most previous neuroscience research has focused on rhythmic brain signaling, which is also called periodic neurophysiology,” said study lead author Kevin C. Yu, BS, a neuroscience student at Wake Forest University School of Medicine. “On the other hand, aperiodic neurophysiology refers to brain signals that are not rhythmic.”

Aperiodic activity is typically treated as ‘background noise’ on brain scans, but recent studies have shown that this background noise may play a key role in how the brain functions.

“While it’s often overlooked, aperiodic activity is important because it reflects brain cortical excitability,” said study senior author Christopher T. Whitlow, MD, PhD, MHA, radiology professor at Wake Forest University School of Medicine.

Cortical excitability is a vital part of brain function. It reflects how nerve cells, or neurons, in the brain’s cortex respond to stimulation and plays a key role in cognitive functions like learning and memory, information processing, decision making, motor control, wakefulness and sleep.

To gain a better understanding of brain rhythms and trauma, the researchers sought to identify the impacts of concussions on aperiodic activity.

Pre- and post-season resting-state magnetoencephalography (MEG) data was collected from 91 high school football players, of whom 10 were diagnosed with a concussion. MEG is a neuroimaging technique that measures the magnetic fields that the brain’s electrical currents produce.

A clinical evaluation tool for concussions called the Post-Concussive Symptom Inventory was correlated with pre- and post-season physical, cognitive and behavioral symptoms.

High school football players who sustained concussions displayed slowed aperiodic activity. Aperiodic slowing was strongly associated with worse post-concussion cognitive symptoms and test scores.

Slowed aperiodic activity was present in areas of the brain that contain chemicals linked with concussion symptoms like impaired concentration and memory.

“This study is important because it provides insight into both the mechanisms and the clinical implications of concussion in the maturing adolescent brain,” said co-lead author Alex I. Wiesman, PhD, assistant professor at Simon Fraser University. “Reduced excitability is conceptually a very different brain activity change than altered rhythms and means that a clear next step for this work is to see whether these changes are related to effects of concussion on the brain’s chemistry.”

The findings from the study may also influence tracking of post-concussion symptoms and aid in finding new treatments to improve recovery.

“Our study opens the door to new ways of understanding and diagnosing concussions, using this novel type of brain activity that is associated with concussion symptoms,” Dr Whitlow said. “It highlights the importance of monitoring kids carefully after any head injury and taking concussions seriously.”

Source: Radiological Society of North America

Concussions in Amateur Sport not Linked to Long-term Cognitive Effects

Photo by Olga Guryanova on Unsplash

The impact of concussion while playing sport is different in those who don’t play professionally, says new research.

Sports-related concussions (SRC) may not be associated with long-term cognitive risks for non-professional athletes, a study led by a UNSW medical researcher suggests. In fact, study participants who had experienced an SRC had better cognitive performance in some areas than those who had never suffered a concussion, pointing to potential protective effects of sports participation.

Published in the Journal of Neurology, Neurosurgery and Psychiatry, the research reveals that individuals who reported experiencing any SRC during their lifetime had a marginally better cognitive performance than those who reported no concussions.

The study, a collaboration between researchers at UNSW Sydney, the University of Oxford, the University of Exeter and Harvard University, analysed data from more than 15 000 participants from the UK-based PROTECT study of 50- to 90-year-olds. This ongoing research aims to understand brain ageing and cognitive decline.

“Our findings suggest that there is something about playing sport, even though a person may experience concussion, that may be beneficial for long-term cognitive outcomes,” says lead author Dr Matt Lennon MD, PhD, at UNSW Medicine & Health.

“While it may be that those who play sports have had access to better education and more resources, we controlled for these factors in the analysis, so that doesn’t explain the result. We hypothesise that there may be physical, social and long-term behavioural effects of sport that may make for healthier adults in late-life,” said Dr Lennon.

Largest study of long-term effects of sports concussions

The study is the largest to date examining the long-term cognitive effects of SRC. Researchers collected lifetime concussion histories from 15 214 participants using the Brain Injury Screening Questionnaire. Among them, 6227 (39.5%) reported at least one concussion and 510 (3.2%) at least one moderate-severe concussion. On average, participants reported suffering their last head injury an average of 29 years prior to the study and their first head injury an average of 39 years earlier.

Researchers then compared cognitive function among individuals with 0, 1, 2 and 3+ SRCs and 0, 1, 2 and 3+ non-sports-related concussions (nSRCs)  (i.e. from falls, car accidents, assaults and other causes). The SRC group showed 4.5 percentile rank better working memory than those who hadn’t experienced an SRC, and 7.9% better reasoning capacity than those without concussions.

Those with one SRC also had better verbal reasoning and attention compared to those with no SRC.

Conversely, participants with 3+ nSRCs – so things like accident and assaults – had worse processing speed and attention, and a declining trajectory of verbal reasoning with age.

“This study suggests that there could be long term benefits from sport which could outweigh any negative effects of concussions, which could have important implications for policy decisions around contact sport participation. It may also be that non-sports related head injuries lead to greater brain damage than sports-related concussions,” said senior author Professor Vanessa Raymont from the University of Oxford and Oxford Health NHS Foundation Trust.

The researchers say the study had some limitations.

“The retrospective design of the study, with elderly participants often recalling details of events over three decades in the past, may have affected the reporting of head injuries, even though we used a well-validated head injury screening tool,” said Prof. Raymont.

Study implications

The study looked at mid-to-late-life people who experienced SRC years earlier, whereas most other studies on SRC focus on younger athletes in the immediate period after their head injuries, where cognitive effects are most salient.

“While these results do not indicate the safety of any sport in particular, they do indicate that overall sports may have greater beneficial effects for long-term cognitive health than the damage it causes, even in those who have experienced concussion,” said Dr Lennon.

“This finding should not be overstated – the beneficial effects were small and in people who had two or more sports-related concussions there was no longer any benefit to concussion. Additionally, this study does not apply to concussions in professional athletes whose head injuries tend to be more frequent, debilitating and severe.”

Anne Corbett, Professor at Exeter University and the lead investigator of the PROTECT study, said: “What we see emerging is a completely different profile of brain health outcomes for people who have concussions as a result of sport compared to those that are not related to sport. Concussions that occur during sport do not lead to brain health concerns whereas other concussion types do, especially when people experience multiple concussions. In fact, people who take part in sport seem to have better brain health regardless of whether they have had a concussion whilst taking part or not.”

Source: University of New South Wales

Concussion is Associated with Iron Accumulation in Certain Brain Areas

Photo by Anna Shvets

People who suffer from headaches after experiencing concussions may also be more likely to have higher levels of iron in areas of the brain – a sign of injury to brain cells, according to a preliminary study presented at the American Academy of Neurology’s 76th Annual Meeting.

“These results suggest that iron accumulation in the brain can be used as a biomarker for concussion and post-traumatic headache, which could potentially help us understand the underlying processes that occur with these conditions,” said study author Simona Nikolova, PhD, of the Mayo Clinic in Phoenix, Arizona, and a member of the American Academy of Neurology.

The study involved 120 participants, 60 of whom who had post-traumatic headache (PTH) due to mild traumatic brain injury (mTBI), and 60 healthy controls. The injuries were due to a fall for 45% of the people, 30% were due to a motor vehicle accident and 12% were due to a fight. Other causes were the head hitting against or by an object and sports injuries. A total of 46% of the people had one mild traumatic brain injury in their lifetime, 17% had two, 16% had three, 5% had four and 16% had five or more mild traumatic brain injuries.

Participants underwent 3T brain magnetic resonance imaging (T2* maps). T2* differences were determined using age-matched paired t-tests. For the PTH group, scans were done an average of 25 days after injury. T2* correlations with headache frequency, number of lifetime mTBIs, time since most recent mTBI, and Sport Concussion Assessment Tool (SCAT) severity scale scores,

The researchers observed lower T2* values in PTH participants relative to HC in the right supramarginal area, left occipital, bilateral precuneus, right cuneus, right cerebellum, right temporal, bilateral caudate, genu of the corpus callosum, right anterior cingulate cortex and right rolandic operculum (p < 0.001).

Within PTH subjects, there were positive correlations with iron accumulation between lifetime mTBIs, the time since most recent mTBI and headache frequency in certain areas of the brain. For example, T2* levels in headache frequency with T2* in the posterior corona radiata, bilateral temporal, right frontal, bilateral supplemental motor area, left fusiform, right hippocampus, sagittal striatum, and left cerebellum were associated with headache frequency.

“Previous studies have shown that iron accumulation can affect how areas of the brain interact with each other,” Nikolova said. “This research may help us better understand how the brain responds and recovers from concussion.”

Nikolova said that using the indirect measure of iron burden also means that the change in that measure could be due to other factors such as haemorrhage or changes in tissue water rather than iron accumulation.

Source: American Academy of Neurology

Difference in Brain Structures may Explain Concussion Outcomes for Males and Females

Coup and contrecoup brain injury. Credit: Scientific Animations CC4.0

Important brain structures that are key for signalling in the brain are narrower and less dense in females, and more likely to be damaged by brain injuries, such as concussion. Long-term cognitive deficits occur when the signals between brain structures weaken due to the injury. These structural differences in male and female brains might explain why females are more prone to concussions and experience longer recovery from the injury than their male counterparts, according to a University of Pennsylvania-led preclinical study published in Acta Neuropathologica.

Each year, approximately 50 million individuals worldwide suffer a concussion, also referred to as mild traumatic brain injury (TBI). For more than 15% of individuals who suffer persisting cognitive dysfunction, which includes difficulty concentrating, learning and remembering new information, and making decisions.

Although males make up the majority of emergency department visits for concussion, this has been primarily attributed to their greater exposure to activities with a risk of head impacts compared to females. In contrast, it has recently been observed that female athletes have a higher rate of concussion and appear to have worse outcomes than their male counterparts participating in the same sport.

“Clinicians have observed for a long time that females suffer from concussion at higher rates than males in the same sports, and that they take longer to recover cognitive function, but couldn’t explain the underlying mechanisms of this phenomenon,” said senior author Douglas Smith, MD, a professor of Neurosurgery and director of Penn’s Center for Brain Injury and Repair. “The variances in brain structures of females and males not only illuminate why this disparity exists, but also exposes biomarkers, such as axon protein fragments, that can be measured in the blood to determine injury severity, monitor recovery, and eventually help identify and develop treatments that help patients repair these damaged structures and restore cognitive function.”

Axons connect neurons, allowing communication across the brain. These axons form bundles that make up white matter in the brain and play a large role in learning and communication between different brain regions. Axons are delicate structures and are vulnerable to damage from concussion.

Communication between axons in the brain is powered by sodium channels that serve as the brain’s electric grid. When axons are damaged, these sodium channels are also impaired, which causes loss of signaling in the brain. The loss of signaling causes the cognitive impairment experienced by individuals after concussion.

In this study, researchers used large animal models of concussion to identify differences in brains of males and females after a concussion. They found that females had a higher population of smaller axons, which researchers demonstrated are more vulnerable to injury. They also reported that in these models, females had greater loss of sodium channels after concussion.

“The differences in brain structure not only tell us a lot about how brain injury affects males and females differently but could offer insights in other brain conditions that impact axons, like Alzheimer’s and Parkinson’s disease,” said Smith. “If female brains are more vulnerable to damage from concussion, they might also be more vulnerable to neurodegeneration, and it’s worth further research to understand how sex influences the structure and functions of the brain.”

Source: University of Pennsylvania School of Medicine

Scientists Test a Soundwave Treatment for Persistent Concussion Symptoms

Coup and contrecoup brain injury. Credit: Scientific Animations CC4.0

Recent research has indicated that acoustic stimulation of the brain may ease persistent symptoms in individuals who experienced mild traumatic brain injury in the past.

The study, which appears in Annals of Clinical and Translational Neurology, included 106 military service members, veterans, or their spouses with persistent symptoms after mild traumatic brain injury sustained three months to 10 years ago. Participants were randomised 1:1 to receive either 10 sessions of engineered tones linked to brainwaves (intervention), or random engineered tones not linked to brainwaves (sham control). All participants rested comfortably in the dark in a ‘zero-gravity’ chair, eyes closed and listening to the computer-generated tones via earbud-style headphones. The primary outcome was change in symptom scores, with secondary outcomes of heart rate variability and self-reported measures of sleep, mood, and anxiety.

Among all study participants, symptom scores clinically and statistically improved compared with baseline, with benefits largely sustained at three months and six months; however, there were no significant differences between the intervention and control groups. Similar patterns were observed for secondary outcomes.

The results indicate that although acoustic stimulation is associated with marked improvement in postconcussive symptoms, listening to acoustic stimulation based on brain electrical activity, as it was delivered in this study, may not improve symptoms, brain function, or heart rate variability more than randomly generated, computer engineered acoustic stimulation.

“Postconcussive symptoms have proven very difficult to treat, and the degree of improvement seen in this study is virtually unheard of, though further research is needed to identify what elements are key to its success,” said corresponding author Michael J. Roy, MD, MPH, of Uniformed Services University and the Walter Reed National Military Medical Center, in Bethesda.

Source: Wiley

Concussions don’t Lower Children’s IQs, Study Finds

Photo by Anna Shvets on Pexels

The angst parents feel when their children sustain injuries is surely one of the universal conditions of parenthood. That anxiety is heightened greatly when those injuries involve concussions. But a new study led out of the University of Calgary, published today in the medical journal Pediatrics, may set worried parental minds slightly at ease.

Derived from data on emergency room visits in children’s hospitals in Canada and the US, the findings show that IQ and intelligence is not affected in a clinically meaningful way by paediatric concussions.

The study compares 566 children diagnosed with concussion to 300 with orthopaedic injuries. The children range in age from eight to 16 and they were recruited from two cohort studies. In the five Canadian hospitals that participated, patients completed IQ tests three months postinjury.

The US cohort was conducted at two children’s hospitals in Ohio, wherein patients completed IQ tests three to 18 days, postinjury.

“Obviously there’s been a lot of concern about the effects of concussion on children, and one of the biggest questions has been whether or not it affects a child’s overall intellectual functioning,” says Dr. Keith Yeates, PhD, a professor in UCalgary’s Department of Psychology and senior author of the Pediatrics paper. Yeates is a renowned expert on the outcomes of childhood brain disorders, including concussion and traumatic brain injuries.

“The data on this has been mixed and opinions have varied within the medical community,” says Yeates. “It’s hard to collect big enough samples to confirm a negative finding. The absence of a difference in IQ after concussion is harder to prove than the presence of a difference.”

Combining the Canadian and U.S. cohorts gave the Pediatrics study an abundant sample and it allowed Yeates and his co-authors to test patients with a wide range of demographics and clinical characteristics.

“We looked at socioeconomic status, patient sex, severity of injuries, concussion history, and whether there was a loss of consciousness at the time of injury,” says Yeates. “None of these factors made a difference. Across the board, concussion was not associated with lower IQ.”

The children with concussion were compared to children with orthopaedic injuries other than concussion to control for other factors that that might affect IQ, such as demographic background and the experience of trauma and pain. This allowed the researchers to determine whether the children’s IQs were different than what would be expected minus the concussion.

The findings of the study are important to share with parents, says Dr Ashley Ware, PhD, a professor at Georgia State University and lead author of the paper.

“Understandably, there’s been a lot of fear among parents when dealing with their children’s concussions,” Ware says. “These new findings provide really good news, and we need to get the message to parents.”

Dr Stephen Freedman, PhD, co-author of the paper and a professor of paediatrics and emergency medicine, agrees. “It’s something doctors can tell children who have sustained a concussion, and their parents, to help reduce their fears and concerns,” says Freedman. “It is certainly reassuring to know that concussions do not lead to alterations in IQ or intelligence.”

Another strength of the Pediatrics research is that incorporates the two cohort studies, one testing patients within days of their concussions and the other after three months.

“That makes our claim even stronger,” says Ware. “We can demonstrate that even in those first days and weeks after concussion, when children do show symptoms such as a pain and slow processing speed, there’s no hit to their IQs. Then it’s the same story three months out, when most children have recovered from their concussion symptoms. Thanks to this study we can say that, consistently, we would not expect IQ to be diminished from when children are symptomatic to when they’ve recovered.”

She adds: “It’s a nice ‘rest easy’ message for the parents.”

Source: University of Calgary

Antihypertensive Drug Prazosin could Relieve Posttraumatic Headaches

Photo by Usman Yousaf on Unsplash

Researchers have shown that the antihypertensive drug prazosin can prevent posttraumatic headaches, such as those caused by a concussion suffered by members of the military. Their findings were published in Headache: The Journal of Head and Face Pain.

Senior study author Dr Murray Raskind explained that few treatment options exist for this type of headache: “Persistent posttraumatic headaches are the most common long-term consequence of mild traumatic brain injuries (concussions) in Veterans and active-duty service members, causing substantial distress and disability at home and work. Although these headaches usually resemble migraine headaches symptomatically, they often fail to respond to the prevention treatments useful for migraines.”

The FDA approved prazosin to treat hypertension in 1976. It has been widely used off-label to treat conditions such as PTSD-associated nightmares and enlarged prostate. An earlier study by members of the research group suggested that prazosin could reduce the frequency and severity of headaches caused by traumatic brain injury (TBI).

To test this effect, researchers led by VA Puget Sound Health Care System conducted a pilot study with 48 Veterans and service members with headaches caused by mild TBI, also known as a concussion. Participants took gradually increasing doses of prazosin for five weeks before receiving the maximum dose for 12 weeks. The study showed that the drug was well-tolerated, and researchers reported that morning drowsiness was the only adverse effect.

Before the trial began, study participants had an average of 18 headache days each month. By the end of the 12-week period, those taking prazosin only had headaches for an average of six days a month. Participants receiving a placebo reported some reduction in headaches, but still had headaches about 12 days a month. Significantly more participants in the prazosin group had at least 50% fewer headaches during the 12 weeks of taking a full dose of medication.

Participants taking prazosin also saw significant decreases in how much headaches impacted their quality of life. By the end of the trial, those taking prazosin reported that headaches had “some impact” on their daily ability to function, while participants given a placebo continued to report “severe impact” of headaches.

Larger clinical trials are needed to confirm the extent of these promising results, according to the researchers, but these initial findings offer a potential relief for a common ailment faced by many Veterans.

“This study is the only clinical trial of an oral medication to demonstrate efficacy for posttraumatic headache. Because prazosin is widely used across VA and the Department of Defense to treat PTSD trauma nightmares and sleep disruption, many VA and DOD prescribers are familiar with prescribing this generically available, inexpensive medication,” said Raskind. “Prazosin now offers an evidence-based approach to alleviate the suffering of Veterans and service members who have struggled for years with frequent posttraumatic headaches.”

Source: Veterans Affair Research Communications

Sports Concussions Increase the Risk of Being Re-injured

Photo by John Torcasio on Unsplash

Concussions are commonplace in contact sports at junior and senior levels. Now, the investigators of a study published in the Journal of Science and Medicine in Sport are suggesting extended recovery times may be needed for youth athletes suffering from head trauma. The new research shows a concussion can increase future injury risk by 50%.

The world-first study from the University of South Australia tracked and evaluated the long-term impact of concussion and subsequent injury risk of 1455 sub-elite junior Australian rules football players.

This builds on previous UniSA research that found an approximate 1.5-fold increased risk of injury of sub-elite Australian rules football players returning from an injury, compared to those with no injury.

Tracking injuries over a seven-season period, researchers found that football players who suffered a concussion were also about 1.5 times more likely to be reinjured in the future when compared to players who had never been injured. This increased risk was the same as players returning from upper and lower limb injuries.

The finding comes ahead of the Australian Senate’s report into concussion injuries, and follows the AFL’s announcement for a $25 million study into the long-term effects of concussions and head knocks.

In the AFL, concussions are one of the most common injuries, with an average of six concussions every 1000 hours played, which involve around 70 to 80 male players every year.

In junior elite football as well as AFL and AFLW, the guidelines for concussion say that the earliest a player can return to play post-concussion is 12 days after the injury, after following the graded progression through a return-to-play program.

Lead researcher, UniSA’s Dr Hunter Bennett, says the significant and elevated risk of injury after a concussion may suggest a longer recovery time is required for some players to better recover before returning to play.

“The current recommendation of 12 days post-concussion may not be sufficient to allow full recovery in elite under-18 footballers,” Dr Bennett says.

It may also indicate that the physical qualities impacted by concussion should be assessed more thoroughly before an athlete is cleared to return to the sport.

“Concussion is a common injury in Australian rules football that can lead to impairments in balance, coordination, reaction time, and decision making – and these impairments can increase the risk of other injuries if an athlete returns to play before being fully recovered.”

A recent consensus statement on concussion in sport also indicates that children and teenagers may take up to four-weeks to recover from a sport related concussion.

“Concussions are a unique injury that occur without muscle tissue damage, instead impacting aspects of motor control,” Dr Bennett says.

“Recurrent injuries can significantly impact team success, player health, and career longevity.

“In elite sports, there is the potential for young athletes to overplay their readiness to return to sport after an injury, as they worry that missing games can exclude them from senior drafting or competition.

“When we know that athletes have a greater risk of another injury post a concussion, it suggests we need unique and careful rehabilitation strategies to monitor when an athlete is fully recovered and ready to return to play.”

Researchers say that future research should seek to identify optimal rehabilitation and injury prevention strategies for athletes who suffer from concussions.

Source: University of South Australia