Tag: vegan diet

Even Vegans who get Enough Total Protein may Fall Short for Some Essential Amino Acids

Even vegans who get enough total protein may fall short for some essential amino acids

In New Zealand study, 3 in 4 vegans ate sufficient protein, but half didn’t meet daily lysine and leucine requirements

In a new study of people with long-term vegan diets, most ate an adequate amount of total daily protein, but a significant proportion did not meet required levels of the amino acids lysine and leucine. Bi Xue Patricia Soh and colleagues at Massey University, New Zealand, present these findings in the open-access journal PLOS One on April 16, 2025.

Proteins are made up of various molecular “building blocks” known as amino acids. While the human body can synthesise most of the amino acids we need to live, we completely rely on the food we eat to provide the nine “indispensable amino acids” we cannot make ourselves. Typically, plant-based foods have more varied levels of indispensable amino acids that the body can use, as compared to animal-sourced foods, so they are of particular concern in vegan diets.

However, most prior research on protein in vegan diets has not considered specific amino acids nor the digestibility of different foods, which accounts for the fact that not all of what we eat, including amino acids, is fully utilised by the body.

To help deepen understanding of amino acid intake in vegan diets, Soh and colleagues analysed detailed, four-day food diaries kept by 193 long-term vegans living in New Zealand. They used information from the United States Department of Agriculture and the New Zealand FoodFiles database to calculate participants’ intake of different amino acids from the different foods they ate.

The analysis showed that about three quarters of participants met daily total protein requirements. Accounting for body weight, intake of all indispensable amino acids also met requirements.

However, when considering digestibility, only about half of the participants met daily requirements for lysine and leucine levels, making them the most limiting indispensable amino acids in the study. Among the food types consumed by participants, legumes and pulses were the biggest contributors to overall protein and lysine intake.

These findings underscore that meeting total daily protein requirements does not necessarily mean meeting indispensable amino acid requirements. On the basis of their findings, the researchers call for future research to explore how intake of leucine and lysine could be boosted for vegans in a nutritionally balanced manner.

The authors add: “Vegan diets are the most restrictive form of plant-based eating, relying entirely on plant sources for all nutrients. Achieving high protein quality on a vegan diet requires more than just consuming enough protein – it also depends on the right balance and variety of plant foods to supply all the amino acids in the quantities that our body needs. Prolonged deficiencies in these essential nutrients can negatively affect overall protein balance, muscle maintenance and other physiological functions, especially in more vulnerable populations.”

“In our study, lysine and leucine were the most commonly under-consumed amino acids in our vegan cohort and fall below the daily requirements needed by our body. This is because many plant foods generally contain lower quantities of these amino acids that can be absorbed and utilised by the body. However, the inclusion of legumes, nuts and seeds emerged as valuable plant sources – not only to support overall protein intake but also to specifically increase lysine and leucine quantities in a vegan diet.”

Provided by PLOS

Switching to Vegan or Keto Diets Impacts Immune System

Photo by Pixabay: https://www.pexels.com/photo/broccoli-161514/

Researchers at the National Institutes of Health observed rapid and distinct immune system changes in a small study of people who switched to a vegan or a ketogenic (“keto”) diet. They found that the vegan diet prompted responses linked to innate immunity while the keto diet prompted responses associated with adaptive immunity. Metabolic changes and shifts in the participants’ microbiomes were also observed. More research is needed to determine if these changes are beneficial or detrimental and what effect they could have on nutritional interventions for diseases such as cancer or inflammatory conditions.

Scientific understanding of how different diets impact the human immune system and microbiome is limited. Therapeutic nutritional interventions, which involve changing the diet to improve health, are not well understood, and few studies have directly compared the effects of more than one diet. The keto diet is a low-carbohydrate diet that is generally high in fat. The vegan diet eliminates animal products and tends to be high in fibre and low in fat.

The study was conducted by researchers from the NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) at the Metabolic Clinical Research Unit in the NIH Clinical Center.

The 20 participants were diverse with respect to ethnicity, race, gender, body mass index (BMI), and age. Participants sequentially ate vegan and keto diets for two weeks, in random order. Each person ate as much as desired of one diet (vegan or keto) for two weeks, followed by as much as desired of the other diet for two weeks. People on the vegan diet, which contained about 10% fat and 75% carbohydrates, chose to consume fewer calories than those on the keto diet, which contained about 76% fat and 10% carbohydrates. Throughout the study period, blood, urine, and stool were collected for analysis.

The effects of the diets were examined using a “multi-omics” approach that analysed multiple data sets to assess the body’s biochemical, cellular, metabolic, and immune responses, as well as changes to the microbiome.

Participants remained on site for the entire month-long study, allowing for careful control of the dietary interventions. Switching exclusively to the study diets caused notable changes in all participants.

The vegan diet significantly impacted pathways linked to the innate immune system, including antiviral responses. On the other hand, the keto diet led to significant increases in biochemical and cellular processes linked to adaptive immunity, such as pathways associated with T and B cells.

The keto diet affected levels of more proteins in the blood plasma than the vegan diet, as well as proteins from a wider range of tissues, such as the blood, brain and bone marrow. The vegan diet promoted more red blood cell-linked pathways, including those involved in heme metabolism, which could be due to the higher iron content of this diet.

Additionally, both diets produced changes in the microbiomes of the participants, causing shifts in the abundance of gut bacterial species that previously had been linked to the diets.

The keto diet was associated with changes in amino acid metabolism – an increase in human metabolic pathways for the production and degradation of amino acids and a reduction in microbial pathways for these processes – which might reflect the higher amounts of protein consumed by people on this diet.

The distinct metabolic and immune system changes caused by the two diets were observed despite the diversity of the participants, which shows that dietary changes consistently affect widespread and interconnected pathways in the body. More study is needed to examine how these nutritional interventions affect specific components of the immune system. According to the authors, the results of this study demonstrate that the immune system responds surprisingly rapidly to nutritional interventions. The authors suggest that it may be possible to tailor diets to prevent disease or complement disease treatments, such as by slowing processes associated with cancer or neurodegenerative disorders.

Source: NIH/National Institute of Allergy and Infectious Diseases