Tag: diabetic neuropathy

New Research Shows that Macrophages Help Prevent the Development of Neuropathy

Source: Pixabay CC0

An increase in high-fat, high-fructose foods in people’s diets has contributed to a dramatic increase in type 2 diabetes. This, in turn, has led to an increase in peripheral neuropathy. About half of people with type 2 diabetes are affected, and of these, about half experience severe neuropathic pain.

The damage begins as axons from sensory neurons begin to retract and disappear from the tissues they innervate. New research from the lab of Clifford Woolf, MB, BCh, PhD, director of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, reveals that months before the damage occurs, immune cells flood into peripheral nerves in an apparent attempt to protect them. This surprising insight, published in Nature, could lead to strategies to prevent peripheral neuropathy or at least minimize and slow the onset of the damage.

Immune cells prevent nerve damage

A team led by Sara Hakim, PhD, a graduate student in the lab, created a mouse model of diabetes induced by a high-fat, high-fructose diet. The model showed that these mice developed all the major features of diabetes within eight to 12 weeks of starting the diet. At about six months, axons in the skin began to degenerate, indicating the presence of neuropathy.

“Diabetic neuropathy takes years, or even decades to develop in humans,” says Hakim, who is now at Vertex. “By using a mouse model in which symptoms slowly develop over months, we were able to catch the progression of the disease over time, and observe those early protective responses when the body is still trying to fight the disease.”

The researchers suspected that peripheral neuropathy is caused by the immune system, so used single-cell sequencing to detect changes in immune cells near sensory neuron axons in peripheral nerves.

One type of immune cell residing in nerves, a pro-inflammatory macrophage, began producing chemokines. These signaling molecules recruited a second population of circulating macrophages, which began infiltrating the nerve 12 weeks after the mice began the diet – as sensory symptoms were starting to appear but before nerve degeneration was seen.

Previously, macrophages were thought to have a pathogenic role in diabetes and were mainly reacting to axon loss. But Hakim, Woolf, and colleagues observed just the opposite.

“To our great surprise, when we blocked infiltration of macrophages into the nerve, neuropathy started getting worse, not better,” says Woolf. “The macrophages were protective. They slowed down the onset of neuropathy and reduced its impact.”

Potential strategies for peripheral neuropathy

The Woolf Lab is now exploring how the infiltrating macrophages protect against peripheral neuropathy. The next step would be to find a way to induce and sustain this protection and identify biomarkers that would flag those people with diabetes who are at risk.

One potential protective strategy might involve accelerating the recruitment of macrophages into nerves; another might involve mimicking their protective function by harnessing compounds they secrete, such as galectin 3.

“Since we could profile the cells and identify what genes they are expressing, we found a number of signalling molecules known to be protective,” says Woolf. “We can now go through that list and check to see which are most active.”

The latest work reinforces the idea that pain isn’t just a disease of neurons, but results from interactions between the nervous system and the immune system. In a study last year, the Woolf Lab discovered thousands of molecular interactions between pain-sensing neurons and different types of immune cells.

Now, the plot is thickening with this example of immune cells acting to prevent painful nerve damage. “We’ve now revealed a novel, slower protective effect of the immune system,” Woolf says.

Source: Boston Children’s Hospital

Diabetic Neuropathy Drug Reduces Drug Resistance in Lung Cancer

In this image from a genetically engineered mouse model, lung cancer driven by the Kras oncogene shows up in purple. As a key driver in many types of cancer, the Kras gene makes a promising target for new cancer therapies. Credit: National Cancer Institute, National Institutes of Health

A medication used to treat diabetic neuropathy may enhance the effectiveness of chemotherapy for patients with lung cancer, according to new findings from the University of Missouri School of Medicine. Despite surgical and chemotherapy treatment, more than 50% of non-metastatic, non-small lung cancer patients see recurrences, in large part because of drug-resistant cancer cells. Researchers identified a way to make these cells more susceptible to chemotherapy, said Dr Jussuf Kaifi, author of the new study published in Clinical Cancer Research.

“Traditional treatments for lung cancer, including chemotherapy, often have little to no effect on the cancer because of drug resistance,” Kaifi said. “It is a major cause of mortality in patients, so finding ways to circumvent drug and chemotherapy resistance is vital to improving patient outcomes.”

The study examined 10 non-small cell lung cancer tumours, half of which were identified as drug resistant. The drug-resistant tumours showed overexpression of a certain enzyme, AKR1B10. When treated with the diabetic neuropathy medication, epalrestat, the tumours became less drug resistant, causing their sensitivity to chemotherapy to significantly increase.

Epalrestat is available in several countries (excluding South Africa) and well-tolerated by patients, but it is not yet approved for use by the Food and Drug Administration in the United States. The medication is currently in high-level clinical trials as part of the FDA’s approval process. If given FDA approval, epalrestat could be fast-tracked in the US as an anti-cancer drug for lung cancer patients.

“In general, developing new drugs for cancer treatment is an extremely lengthy, expensive and inefficient process,” Kaifi said. “In contrast, ‘repurposing’ these drugs to other diseases is much faster and cheaper. In view of overcoming drug resistance, epalrestat can rapidly be advanced to the clinic to improve cure rates in lung cancer patients.”

Source: University of Missouri

A Soft Robotic Design for Diabetic Amputee Pain Relief

Proof-of-concept rendering (left) and photo (right) of the prototype of the new microfluidics-enabled soft robotic prosthesis for lower limb amputees.
Credit: Waterloo Microfluidics Laboratory at University of Waterloo

Diabetic amputations often involve neuropathy, and patients detect damage resulting from an ill-fitting prosthesis, leading to further amputation. To solve this, in Biomicrofluidics, scientists described a new type of prosthetic using microfluidics-enabled soft robotics that reduces skin ulcerations and pain in patients who have had an amputation between the ankle and knee.

More than 80% of lower-limb amputations are due to diabetic foot ulcers, and the lower limb is known to swell at unpredictable times, resulting in volume changes of 10% or more.

Typically, the prosthesis used after amputation includes fabric and silicone liners that can be added or removed to improve fit. The amputee needs to manually change the liners, but neuropathy leading to poor sensation makes this difficult and can lead to more damage to the remaining limb.

“Rather than creating a new type of prosthetic socket, the typical silicon/fabric limb liner is replaced with a single layer of liner with integrated soft fluidic actuators as an interfacing layer,” said author Carolyn Ren, from the University of Waterloo. “These actuators are designed to be inflated to varying pressures based on the anatomy of the residual limb to reduce pain and prevent pressure ulcerations.”

The scientists started off with pneumatic actuators to adjust the pressure of the prosthetic socket, but it was quite heavy.

To reduce weight, the group miniaturised the actuators, designing a microfluidic chip with 10 integrated pneumatic valves to control each actuator. The full system is controlled by a miniature air pump and two solenoid valves that provide air to the microfluidic chip. The control box is small and light enough to be worn as part of the prosthesis.

Prosthetics experts provided a detailed map of desired pressures for the prosthetic socket. The group carried out extensive measurements of the contact pressure provided by each actuator and compared these to the desired pressure for a working prosthesis.

All of the actuators produced the right pressures suggesting the new device will work well in the field, with the next step being a more accurate biological model.

The group plans additional research to integrate pressure sensors directly into the prosthetic liner, perhaps using newly available knitted soft fabric that incorporates pressure sensing material.

Source: American Institute of Physics